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Announcements

• Lab 10 – Missing SQRT

• Lab 11 -- Clarification

• Thursday – Milestone 2 return and 
schedule, will talk about presentation.

• Classification and Decision Trees!
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Machine learning

• We used a linear model to classify input documents
• The model parameters θ were given to us a priori
• (Nick created them by hand.)
• Typically, we cannot specify a model by hand.
• Supervised machine learning provides a way to automatically infer the predictive model from 

labeled data.

Training Data

(x(1), y(1))
(x(2), y(2))
(x(3), y(3))

…

ML Algorithm

Hypothesis function
y(i) = h(x(i))

Predictions

New example x
y = h(x)



Terminology

• Input features:

• Outputs:
• y(i) ∈ {0, 1} = { hates_cats, likes_cats }

• Model parameters: 
I lik

e

ha
te

ca
ts

1 1 0 1
1 0 1 1

x(1)T =
x(2)T =

0 -1 1 -0.1 0 1 -1 0.5 1θ T =



Terminology

• Hypothesis function: 
• E.g., linear classifiers predict outputs using:

• Loss function:
• Measures difference between a prediction and the true output
• E.g., squared loss:
• E.g., hinge loss:  

`(y) = max(0, 1� t · y)
Output t = {-1,+1} based on 
-1 or +1 class label

Classifier score y



• At the end of the day, we want to learn a hypothesis function that predicts the actual outputs 
well.

Given an hypothesis 
function and loss function

Over all possible 
parameterizations 

And over all your 
training data*

Choose the parameterization 
that minimizes loss!

*Not actually what we want – want it over the world of inputs – will discuss later …

The canonical Machine learning problem



1. What is the hypothesis function?
– Domain knowledge and EDA can help here.

2. What is the loss function?
• We’ve discussed two already: squared and absolute.

3. How do we solve the optimization problem?
• (We talked about gradient descent in class, but if you are 

interested, take ML next semester!)

First GIS result for “optimization”

How do I machine learn?



9

Classification tasks

Regression tasks: predicting real-valued quantity ! ∈ ℝ

Classification tasks: predicting discrete-valued quantity !

Binary classification: ! ∈ −1,+1

Multiclass classification: ! ∈ 1,2,… ,*

4
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Example: breast cancer classification

Well-known classification example: using machine learning to diagnose whether a 
breast tumor is benign or malignant [Street et al., 1992]

Setting: doctor extracts a sample of fluid from tumor, stains cells, then outlines 
several of the cells (image processing refines outline)

System computes features for each cell such as area, perimeter, concavity, texture 
(10 total); computes mean/std/max for all features

5



11

Example: breast cancer classification

Plot of two features: mean area vs. mean concave points, for two classes

6
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Linear classification example

Linear classification ≡ “drawing line separating classes” 

7
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Formal setting

Input features: , ! ∈ ℝ", - = 1,… ,/

E. g. : , ! =
Mean_Area !

Mean_Concave_Points !
1

Outputs: ! ! ∈ C, - = 1,… ,/
E. g. : ! ! ∈ {−1 benign ,+1 (malignant)}

Model parameters: K ∈ ℝ"

Hypothesis function: ℎ#:ℝ" →ℝ, aims for same sign as the output (informally, 
a measure of confidence in our prediction)

E. g. : ℎ# , = K$,, ̂! = sign(ℎ# , )
9
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Understanding linear classification diagrams

Color shows regions where the ℎ!(#) is positive

Separating boundary is given by the equation ℎ! # = 0

10



15

Machine learning optimization

With this notation, the “canonical” machine learning problem is written in the exact same 
way

minimize
!

∑
"=1

%
ℓ ℎ! # " , / "

Unlike least squares, there is not an analytical solution to the zero gradient condition for 
most classification losses

Instead, we solve these optimization problems using gradient descent (or a alternative 
optimization method, but we’ll only consider gradient descent here)

Repeat: 5 ≔ 5 − 8∑
"=1

%
9!ℓ(ℎ! # " , / " )

15
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Loss functions for classification

How do we define a loss function ℓ:ℝ×{−1,+1}→ℝ+?

What about just using squared loss?

11

y

−1

+1

x0

y

−1

+1

x0
Least squares

y

−1

+1

x0
Least squares
Perfect classifier
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0/1 loss (i.e. error)

The loss we would like to minimize (0/1 loss, or just “error”):

ℓ0/1 ℎ# , , ! = {0 if sign ℎ# , = !
1 otherwise

= V{! ⋅ ℎ# , ≤ 0}

12



loss

Each time we change θ such that the example is right 
(wrong) the loss will increase (decrease)

θ

nX

i=1

1
h
y(i) · h✓, x(i)i  0

i
Minimizing 0/1 loss in a single dimension

(Recall: y in {-1, +1})



• This is NP-hard.
• Small changes in any θ can have large changes in the loss (the 

change isn’t continuous)
• There can be many local minima
• At any give point, we don’t have much information to direct us 

towards any minima
• Maybe we should consider other loss functions.

argmin
✓

nX

i=1

1
h
y(i) · h✓, x(i)i  0

i
Minimizing 0/1 loss over all θ

(Recall: y in {-1, +1})



• What are some desirable properties of a loss function????????
• Continuous so we get a local indication of the direction of 

minimization
• Only one (i.e., global) minimum

loss

θ

Desirable properties



Convex functions

• “A function is convex if the line segment between any two points on its graph lies above it.”
• Formally, given function f and two points x, y:

f(�x+ (1� �)y)  �f(x) + (1� �)f(y) 8� 2 [0, 1]



Surrogate loss functions

• For many applications, we really would like to minimize the 0/1 loss

• A surrogate loss function is a loss function that provides an upper bound on the actual loss 
function (in this case, 0/1)

• We’d like to identify convex surrogate loss functions to make them easier to minimize

• Key to a loss function is how it scores the difference between the actual label y and the 
predicted label y’



Surrogate loss functions

• 0/1 loss:
• Any ideas for surrogate loss functions ??????????

Want: a function that is continuous and convex and upper bounds the 0/1 loss.

• Hinge:

• Exponential:

• Squared:

• What do each of these penalize?????????

`(ŷ, y) = 1 [yŷ  0]

`(ŷ, y) = max(0, 1� yŷ)

`(ŷ, y) = (y � ŷ)2

`(ŷ, y) = e�yŷ

(Recall: y in {-1, +1})



0/1 loss:

Squared loss:

Hinge:

Exponential:

`(ŷ, y) = 1 [yŷ  0]
`(ŷ, y) = max(0, 1� yŷ)

`(ŷ, y) = e�yŷ

`(ŷ, y) = (y � ŷ)2

(Recall: y in {-1, +1})

Surrogate loss functions



Name Hypothesis 
Function

Loss Function Optimization
Approach

Least squares Linear Squared Analytical or GD

Linear regression Linear Squared Analytical or GD

Support Vector 
Machine (SVM)

Linear, Kernel Hinge Analytical or GD

Perceptron Linear Perceptron
criterion (~Hinge)

Perceptron 
algorithm, others

Neural Networks Composed
nonlinear

Squared, Hinge SGD

Decision Trees Hierarchical
halfplanes

Many Greedy

Naïve Bayes Linear Joint probability #SAT

Follow the white rabbit: https://en.wikipedia.org/wiki/List_of_machine_learning_concepts

Some ML algorithms

https://en.wikipedia.org/wiki/List_of_machine_learning_concepts


• At the end of the day, we want to learn a hypothesis function that predicts the actual outputs 
well.

Given an hypothesis 
function and loss function

Over all possible 
parameterizations 

And over all your 
training data*

Choose the parameterization 
that minimizes loss!

*Not actually what we want – want it over the world of inputs – will discuss later …

The canonical Machine learning problem



Big Picture of Learning   

• Learning can be seen as fitting a function to the data. We can consider 
• different  target functions and therefore different hypothesis spaces. 
• Examples:
• Propositional if-then rules
• Decision Trees
• First-order if-then rules 
• First-order logic  theory
• Linear functions
• Polynomials of  degree at most k
• Neural networks 
• Java programs
• Turing machine
• Etc

Tradeoff between expressiveness of
a hypothesis space and the 

complexity of finding simple, consistent hypotheses
within the space.

A learning problem
is realizable if its hypothesis space 

contains the true function.



Decision Tree Learning

• Input: an object or situation described by a set of attributes (or features)
• Output: a “decision” – the predicts output value for the input.

• The input attributes and the outputs can be discrete or continuous.

• We will focus on decision trees for Boolean classification: 
• each example is classified as positive or negative.

Task:
– Given: collection of examples (x, f(x))
– Return: a function h (hypothesis) that approximates f
– h is a decision tree



New York Times
April 16, 2008

Can we learn 
how counties vote?

Decision Trees:
a sequence of tests.
Representation very natural for 
humans.
Style of many “How to” manuals 
and trouble-shooting
procedures.



Note: order of tests
matters (in general)!
When not?



Decision tree
learning approach
can construct tree
(with test thresholds)
from example counties.



Decision Tree

•A tree with two types of nodes: 

• Decision nodes
• Leaf nodes
•
•Decision node: Specifies a choice or  test of 
some attribute with 2 or more alternatives;

– every decision  node is  part of a path to 
a leaf node

•Leaf node: Indicates classification of an 
example



Food  
(3) 

Chat  
(2) 

Fast  
(2) 

Price 
(3) 

Bar  
(2) 

BigTip 

great   yes       yes        normal          no       yes            
great   no        yes        normal          no       yes            
mediocre    yes       no         high        no       no             
great   yes       yes        normal          yes      yes             
 

Instance Space X: Set of all possible objects described by attributes 
(often called features). 

Target Function f: Mapping from Attributes to Target Feature  
(often called label)  (f is unknown)

Hypothesis Space H: Set of all classification rules hi we allow.

Training Data D: Set of instances labeled with Target Feature

Etc.

Inductive Learning Example



Announcements

• Lab 11 Review

• Final Presentation Schedule

• Milestone 2 / Optional Lab 12 / 
Questions Announcement.

• Tuesday (Last) Lecture Survey?

• (More) Classification and Decision 
Trees!

34https://xkcd.com/1488/
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Decision Tree Example: “BigTip”

Food

Price

Speedy
no

yes no

no

yes

great

mediocre
yuck

yes no

adequate high

Is the decision tree we learned consistent?

Yes, it agrees with all the examples!

Our data

Data: Not all 2x2x3 = 12 tuples
Also, some repeats! These are
literally “observations.”



Learning decision trees: An example
• Problem: decide whether to wait for a table at a restaurant. What attributes would you 

use?

• Attributes used by R&N
1. Alternate: is there an alternative restaurant nearby?
2. Bar: is there a comfortable bar area to wait in?
3. Fri/Sat: is today Friday or Saturday?
4. Hungry: are we hungry?
5. Patrons: number of people in the restaurant (None, Some, Full)
6. Price: price range ($, $$, $$$)
7. Raining: is it raining outside?
8. Reservation: have we made a reservation?
9. Type: kind of restaurant (French, Italian, Thai, Burger)
10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

Goal predicate: WillWait?

What about
restaurant name?

It could be great for 
generating a small tree
but …

It doesn’t generalize!



Attribute-based representations
• Examples described by attribute values (Boolean, discrete, continuous)
• E.g., situations where I will/won't wait for a table:

• Classification of examples is positive (T) or negative (F)

12 examples
6 +
6 -



Decision trees
• One possible representation 

for hypotheses

• E.g., here is a tree for 
deciding whether to wait:



Expressiveness of Decision Trees

Any particular decision tree hypothesis for WillWait goal predicate can  be 
seen as a disjunction of a conjunction of tests, i.e., an assertion of the form:

"s  WillWait(s) « (P1(s) Ú P2(s) Ú … Ú Pn(s))

Where each condition Pi(s) is a conjunction of tests corresponding 
to the path from the root of the tree to a leaf with a positive outcome.



Expressiveness
• Decision trees can express any Boolean  function of the input attributes.
• E.g., for Boolean functions, truth table row → path to leaf:



• How many distinct decision trees with 10 Boolean attributes?
• = number of Boolean functions with 10 propositional symbols

• Input features Output

• 0 0 0 0 0 0 0 0 0 0 0/1
• 0 0 0 0 0 0 0 0 0 1 0/1
• 0 0 0 0 0 0 0 0 1 0 0/1
• 0 0 0 0 0 0 0 1 0 0 0/1
• …
• 1 1 1 1 1 1 1 1 1 1 0/1

How many entries does this table have? 210

So how many Boolean functions
with 10 Boolean attributes are there,

given that each entry can be 0/1?

= 2210

Number of Distinct Decision Trees



Hypothesis spaces

• How many distinct decision trees with n Boolean attributes?
• = number of Boolean functions

• = number of distinct truth tables with 2n rows 

• With 6 Boolean attributes, there are 18,446,744,073,709,551,616 possible trees!

= 22n

Many calculators can’t handle 10 attributes J!

E.g. how many Boolean functions on 6 attributes? A lot…

There are even more decision trees! (see later)



• Decision trees can express any Boolean  function. 
• Goal: Finding a decision tree that agrees with training set.
• We could construct a decision tree that has one path to a leaf for each example, 

where the path tests sets each attribute value to the value of the example. 

• Overall Goal: get a good  classification with a small number of tests.

Decision tree learning Algorithm 

Problem: This approach would just memorize 
example. How to deal with new examples? It 
doesn’t generalize!

We want a compact/smallest tree.
But finding the smallest tree consistent with the examples is NP-hard!

(But sometimes hard to avoid --- e.g. 
parity function, 1, if an even number 
of inputs, or majority function, 1, if 
more than half of the inputs are 1).

What is the problem with this from a learning point of view?
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222Expressiveness: Boolean Function with 2 attributes à DTs 
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Basic DT Learning Algorithm
• Goal: find a small tree consistent with the training examples

• Idea: (recursively) choose "most significant" attribute as root of (sub)tree;
• Use  a top-down greedy search through the space of possible decision trees.
• Greedy because there is no backtracking. It picks highest values first.

• Variations of  known algorithms ID3, C4.5 (Quinlan -86, -93)

• Top-down greedy construction
– Which attribute should be tested?

– Heuristics and Statistical testing with current data
– Repeat for descendants

(ID3 Iterative Dichotomiser 3) 

“most significant”
In what sense?



Big Tip Example 

Let’s build  our decision  tree 
starting with the  attribute Food,
(3 possible values: g, m, y).

1087431

2 5 6 9

10 examples:

6+

4-

Attributes:  
•Food with values g,m,y
•Speedy? with values y,n
•Price, with values a, h



10 examples: 

Food

y
g

m

How many + and - examples 
per subclass, starting with y?

6+
4-

1087431

2 5 6 9

6 

1087431

2

5 9

No No

Let’s consider next 
the attribute Speedy

Speedy

y n

108731

4

2Yes Price
a h

4 2

Yes No

Node “done” when uniform 
label or 
“no further uncertainty.”

Top-Down Induction of Decision Tree: Big Tip Example 



• TDIDF(D,cdef)

• IF(all examples in D have same class c)
– Return leaf with class c (or class cdef, if D is empty)

• ELSE IF(no attributes left to test)
– Return leaf with class c of majority in D

• ELSE
– Pick A as the “best” decision attribute for next node
– FOR each value vi of A create a new descendent of node

–
– Subtree ti for vi is TDIDF(Di,cdef)

– RETURN tree with A as root and ti as subtrees

} v valuehas x ofA  attribute :D  y),x{(D ii
!!

Î=

)}y,x(,),y,x{(D nn11
!!

…=Training Data:

Yes

Top-Down Induction of DT (simplified)



• Ockham’s Razor:
– All other things being equal, choose the simplest explanation

• Decision Tree Induction:
– Find the smallest tree that classifies the training data correctly

• Problem
– Finding the smallest tree is computationally hard L!

• Approach
– Use heuristic search (greedy search)

Key Heuristics:
– Pick attribute that maximizes information (Information Gain)

i.e. “most informative”
– Other statistical tests

Picking the Best Attribute to Split 



Attribute-based representations
• Examples described by attribute values (Boolean, discrete, continuous)
• E.g., situations where I will/won't wait for a table:

• Classification of examples is positive (T) or negative (F)

12 examples
6 +
6 -



Choosing an attribute: Information Gain

Which one should we pick?

A perfect attribute would ideally divide the 
examples into sub-sets that are all positive or all negative…
i.e. maximum information gain.

Is this a good attribute
to split on?

Goal: trees with short paths to leaf nodes 



Information Gain

• Most useful in classification
– how to measure the ‘worth’ of an attribute information gain
– how well attribute separates examples according to their classification

• Next
– precise definition for gain

Shannon and Weaver 49

à measure from Information Theory

One of the most successful and impactful
mathematical theories known.



• “Information” answers questions.

• The more clueless I am about a question, the more information
• the answer to the question contains. 

• Example – fair coin à prior <0.5,0.5>
•
• By definition Information of the prior (or entropy of the prior):
• I(P1,P2) =  - P1 log2(P1) –P2 log2(P2) = 
• I(0.5,0.5) = -0.5 log2(0.5) – 0.5 log2(0.5) = 1

• We need 1 bit to convey the outcome of the flip of a fair coin.

• Why does a biased coin have less information? 
• (How can we code the outcome of a biased coin sequence?)

Scale: 1 bit = answer to Boolean question with prior <0.5, 0.5>

Information



• Information in an answer  given possible answers v1, v2, … vn:

Example – biased coin à prior <1/100,99/100>

I(1/100,99/100) = -1/100 log2(1/100) –99/100 log2(99/100) 
= 0.08 bits (so not much information gained from “answer.”)

Example – fully biased coin à prior <1,0>

I(1,0) = -1 log2(1) – 0 log2(0) = 0 bits
0 log2(0)  =0

i.e., no uncertainty left in source!

(Also called entropy of the prior.)

Information (or Entropy)



Shape of Entropy Function

Roll of an unbiased die

The more uniform the probability distribution, 
the greater is its entropy.

0

1

0 1/2 1 p



•Information or Entropy measures the “randomness” of an arbitrary collection of 
examples.

•We don’t have exact probabilities but our training data provides an estimate of the 
probabilities of positive vs. negative examples given a set of values for the attributes.
•For a collection S,  entropy is given as:

•

•For a collection S having positive and negative examples

• p - # positive examples;
• n - # negative examples

Information or Entropy



Attribute-based representations

• Examples described by attribute values (Boolean, discrete, continuous)
• E.g., situations where I will/won't wait for a table:

• Classification of examples is positive (T) or negative (F)
•

12 examples
6 +
6 -

p = n = 6; I(0.5,0.5) = -0.5 log2(0.5) –0.5 log2(0.5) = 1

So, we need 1 bit of info to classify a randomly picked example,
assuming no other information is given about the example.

What’s the entropy
of this collection of 
examples?



• Intuition: Pick the attribute that reduces the entropy (the uncertainty) the most.

• So we measure the information gain after testing a given attribute A:

Remainder(A) à gives us the remaining uncertainty after 
getting info on attribute A.

Choosing an attribute: Information Gain



Choosing an attribute: Information Gain
• Remainder(A) 

• à gives us the amount information we still need after testing on A.

• Assume A divides the training set E into E1, E2, … Ev, 
corresponding to the different v distinct values of A.

• Each subset Ei has pi positive examples and ni negative examples.

• So for total information content, we need to weigh the 
contributions of the different subclasses induced by A

Weight (relative size) of each subclass



Choosing an attribute: Information Gain

• Measures the expected reduction in entropy. The higher the Information 
Gain (IG), or just Gain, with respect to an attribute A , the more is the 
expected reduction in entropy.

• where Values(A) is the set of all possible values for attribute A,
• Sv is the subset of S for which attribute A has value v.

Weight of each subclass

𝐺𝑎𝑖𝑛 𝑆, 𝐴 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑆 − 1
2 ∈345678 9

|𝑆2|
𝑆 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆2)



• Gain(S,A)
– expected reduction in entropy caused by knowing A
– information provided about the target function value given 

the value of A
– number of bits saved in the coding a member of S knowing 

the value of A

Used in ID3 (Iterative Dichotomiser 3) Ross Quinlan

Interpretations of Gain



Information gain
• For the training set, p = n = 6, I(6/12, 6/12) = 1 bit

• Consider the attributes Type and Patrons:

• Patrons has the highest IG of all attributes and so is chosen by the DTL algorithm as the 
root.

What if we used attribute “example label” uniquely
specifying the answer? Info gain? Issue?

Info gain?

High branching: can correct with “info gain ratio”



Example contd.
• Decision tree learned from the 12 examples:

Substantially simpler than “true” tree -- but a more complex hypothesis isn’t justified from just the data.

“personal R&N Tree”



• Roughly: prefer
– shorter trees over deeper/more complex ones

– E.g., Occam’s Razor
– ones with high gain attributes near root

• Difficult to characterize precisely
– attribute selection heuristics
– interacts closely with given data

Inductive Bias



Evaluation Methodology
General for Machine Learning



• Standard methodology (“Holdout Cross-Validation”):
1. Collect a large set of examples.
2. Randomly divide collection into two disjoint sets:  training set and test set.
3. Apply learning algorithm to training set generating hypothesis h
4. Measure performance of h w.r.t. test set (a form of cross-validation)
à measures generalization to unseen data 

• Important: keep the training and test sets disjoint! “No peeking”!
• Note: The first two questions about any learning result: Can you describe
• your training and your test set? What’s your error on the test set?

How to evaluate the quality of a learning algorithm, i.e.,:
How good are the hypotheses produced by the learning algorithm? 
How good are they at classifying unseen examples?

Evaluation Methodology



• Example of peeking:

• We generate four different hypotheses –
for example by using different criteria to pick the next attribute to branch on.

• We test the performance of the four different hypothesis on the test set and we select 
the best hypothesis.

Voila: Peeking occurred! Why?
The hypothesis was selected on the basis of its performance on the test set, 

so information about the test set has leaked into the learning algorithm.

So a new (separate!) test set would be required! 

Note: In competitions, such as the “Netflix $1M challenge,” test set is not revealed to the competitors. 
(Data is held back.)

Peeking



Real-world Process

(x1,y1), …, (xn,yn) Learner (x1,y1),…(xk,yk)
Training Data Dtrain Test Data Dtest

split randomly split randomly

hDtrain

Data D

drawn randomly

Test/Training Split



Measuring Prediction Performance



Performance Measures

• Error Rate
– Fraction (or percentage) of false predictions

• Accuracy
– Fraction (or percentage) of correct predictions

• Precision/Recall
Example: binary classification problems (classes pos/neg)

– Precision: Fraction (or percentage) of correct predictions
among all examples predicted to be positive

– Recall: Fraction (or percentage) of correct predictions
among all real positive examples

(Can be generalized  to multi-class case.)



Types of Error

• We can make errors in different 
directions in classification.

• Say we have 13 animals and we 
are trying to classify them.
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• Precision P:
#correct positive results / #positive results returned

• Recall R:
#correct positive results / #all possible positive results

Precision Versus Recall:



• Learning curve graph

• average prediction quality –

proportion correct on test set –

• as a function of the size of the training set..

Learning Curve Graph
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Restaurant Example: Learning Curve

As the training set increases, 
so does the quality of prediction:

à“Happy curve” J!

à the learning algorithm is able to capture
the pattern in the data

On test set



Precision vs. Recall

• Precision
– # of true positives / (# true positives + # false positives)

• Recall
– # of true positives / (# true positives + # false negatives)

• A precise classifier is selective
• A classifier with high recall is inclusive



Precision-Recall curves

Precision

Recall

Measure Precision vs Recall as the classification 
boundary is tuned

Better learning
performance



Precision-Recall curves

Precision

Recall

Measure Precision vs Recall as the classification 
boundary is tuned

Learner A

Learner B

Which learner is better?



Area Under Curve

Precision

Recall

AUC-PR: measure the area under the precision-
recall curve

AUC=0.68



AUC metrics

• A single number that measures “overall” performance across multiple thresholds
– Useful for comparing many learners
– “Smears out” PR curve

• Note training / testing set dependence



• F-Score F:
weighted average of the precision and recall of a test

• F1: (harmonic) mean of precision and recall:

• Can be parameterized to attach higher importance to recall:

F-Score



•Many case studies have shown that decision trees are at least as accurate as human 
experts. 
– A study for diagnosing breast cancer had humans correctly 

classifying the examples 65% of the time, and the decision tree
classified 72% correct.

– British Petroleum designed a decision tree for gas-oil separation for 
offshore oil platforms that  replaced an earlier  rule-based expert 
system.

– Cessna designed an airplane flight controller using 90,000 examples 
and 20 attributes per example.

How well does it work?



• Decision tree learning is a particular case of  supervised learning, 

• For supervised learning, the aim is to find a simple hypothesis 
approximately consistent with training examples

• Decision tree learning using information gain

• Learning performance = prediction accuracy measured on test set

Summary



• Trains a decision tree using default parameters (attribute chosen 
to split on either Gini or entropy, no max depth, etc) 

from sklearn.datasets import load_iris
from sklearn import tree

# Load a common dataset, fit a decision tree to it
iris = load_iris()
clf = tree.DecisionTreeClassifier()
clf = clf.fit(iris.data, iris.target)

# Predict most likely class
clf.predict([[2., 2.]])

# Predict PDF over classes (%training samples in leaf)
clf.predict_proba([[2., 2.]])

Decision Trees in Scikit



Visualizing a decision tree
from IPython.display import Image
dot_data = tree.export_graphviz(clf, 

out_file=None,
feature_names=iris.feature_names,
class_names=iris.target_names,
filled=True, rounded=True)

graph = pydotplus.graph_from_dot_data(dot_data)
Image(graph.create_png())



Random Forests

• Decision trees are very interpretable, but may be brittle to changes in the training data, as well 
as noise

• Random forests are an ensemble method that:
• Resamples the training data;
• Builds many decision trees; and
• Averages predictions of trees to classify.
• This is done through bagging and random feature selection



Bagging

• Bagging: Bootstrap aggregation
• Resampling a training set of size n via the bootstrap:
• Sample with replacement n elements
• General scheme for random forests:
1. Create B bootstrap samples, {Z1, Z2, …, ZB}
2. Build B decision trees, {T1, T2, …, TB}, from {Z1, Z2, …, ZB}
• Classification/Regression:
1. Each tree Tj predicts class/value yj

2. Return average 1/B Σj={1,...,B} yj for regression, 
or majority vote for classification



obs_id ft_1 ft_2
1 12.2 puppy
2 34.5 dog
3 8.1 cat

Original training 
dataset (Z):

obs_id ft_1 ft_2
3 8.1 cat
2 34.5 dog
3 8.1 cat

obs_id ft_1 ft_2
1 12.2 puppy
2 34.5 dog
1 12.2 puppy

obs_id ft_1 ft_2
1 12.2 puppy
1 12.2 puppy
3 8.1 cat

Z1 Z2
ZB

B Bootstrap 
samples Zj

Aggregate/Vote

T1 T2 TBTj

Class estimate or predicted value



Random Attribute selection

• We get some randomness via bootstrapping
• We like this!  Randomness increases the bias of the forest slightly at a huge decrease in 

variance (due to averaging)
•

We can further reduce correlation between trees by:
1. For each tree, at every split point …
2. … choose a random subset of attributes …
3. … then split on the “best” (entropy, Gini) within only that subset



Random forests in scikit-learn

• Can we get even more random?!
• Extremely randomized trees (ExtraTreesClassifier) do 

bagging, random attribute selection, but also:
1. At each split point, choose random splits
2. Pick the best of those random splits
• Similar bias/variance performance to RFs, but can be 

faster computationally
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from sklearn.ensemble import RandomForestClassifier

# Train a random forest of 10 default decision trees
X = [[0, 0], [1, 1]]
Y = [0, 1]
clf = RandomForestClassifier(n_estimators=10)
clf = clf.fit(X, Y)



• Noisy data 
• Overfitting and Model Selection
• Cross Validation
• Missing Data (R&N, Section 18.3.6)
• Using gain ratios (R&N, Section 18.3.6)
• Real-valued data (R&N, Section 18.3.6)
• Generation of rules and pruning

Extensions of the Decision Tree Learning Algorithm (Briefly)



• Many kinds of "noise" that could occur in the examples:

– Two examples have same attribute/value pairs, but different classifications
àreport majority classification for the examples corresponding to the node 
deterministic hypothesis.
àreport estimated probabilities of each classification using the relative 

frequency (if considering stochastic hypotheses)

– Some values of attributes are incorrect because of errors in the data acquisition 
process or the preprocessing phase 

– The classification is wrong (e.g., + instead of -) because of some error 

One important reason why you don’t want to 
“overfit” your learned model.

Noisy data 



Ex.: Problem of trying to predict the roll of a die. The experiment data 
include: 

Day of the week; (2) Month of the week; (3) Color of the die; 
….

DTL may find an hypothesis that fits the data but with irrelevant 
attributes.

Some attributes are irrelevant to the decision-making process, e.g., 
color

of a die is irrelevant to its outcome but they are used to differentiate 
examples à Overfitting.

Overfitting means fitting the training set “too well”
à performance on the test set degrades.

Example overfitting risk: Using restaurant name. 

Overfitting



• If the  hypothesis space has many dimensions because of a large number of
attributes, we may find meaningless regularity in the data that is irrelevant 
to the true, important, distinguishing features. 

– Fix by pruning to lower # nodes in the decision tree or put a
limit on number of nodes created.

– For example, if Gain of the best attribute at a node is below a threshold, 
stop and make this node a leaf rather than generating children nodes. 

Overfitting is a key problem in learning. There are formal 
results on the number of examples needed to properly train an
hypothesis of a certain complexity (“number of parameters” or 
# nodes in DT). The more params, the more data is needed. 
We’ll see some of this in our discussion of PAC learning.



• Let’s consider D, the entire distribution of data, and T, the training set.

• Hypothesis h Î H overfits D if
$ h’¹ h Î H such that

errorT(h) < errorT(h’) but 
errorD(h) > errorD(h’)

Note: estimate error on full distribution by using test data set.

Overfitting



• Data overfitting is the arguably the most common pitfall in machine learning

• Why?

1) Temptation to use as much data as possible to train on. (“Ignore test till 
end.” Test set too small.) Data “peeking” not noticed.

1) Temptation to fit very complex hypothesis (e.g. large decision tree). In 
general, the larger the tree, the better the fit to the training data.

• It’s hard to think of a better fit to the training data as a “worse”
• result. Often difficult to fit training data well, so it seems that 
• “a good fit to the training data means a good result.”

Note: Modern “savior:” Massive amounts of data to train on!
Somewhat characteristic of ML AI community vs. traditional
statistics community. Anecdote: Netflix competition.



Key figure in machine learning

Note: with larger and larger trees,
we just do better and better on the training set!

We set tree size as 
a parameter in our
DT learning alg.

But note the performance on the validation set…

Tree size

Er
ro

r r
at

e

Overfitting kicks in…

Optimal tree size

errorT(h) < errorT(h’) but 
errorD(h) > errorD(h’)  



• Procedure for finding the optimal tree size is called “model 
selection.”

• See section 18.4.1 R&N and Fig. 18.8.

• To determine validation error for each tree size, use k-fold cross-
validation. (Uses the data better than “holdout cross-validation.”)

• Uses “all data - test set” --- k times splits that set into a training
• set and a validation set.

• After right decision tree size is found from the error rate curve on
• validation data, train on all training data to get final decision tree
• (of the right size).

• Finally, evaluate tree on the test data (not used before) to get
• true generalization error (to unseen examples).



CV( data S, alg L, int k )
Divide S into k disjoint sets  { S1, S2, …, Sk }
For i = 1..k do

Run L on S-i = S – Si
obtain L(S-i) = hi

Evaluate hi on Si
errSi(hi) = 1/|Si| å á x,yñ Î Si I(hi(x) ¹ y)

Return Average 1/k åi errSi(hi)

A method for estimating the accuracy 
(or error) of a learner (using validation set).

Learner L is e.g. DT learner for “tree with
7 nodes” max.

Cross Validation



• 1) Decision tree pruning or grow only up to certain size.
• Prevent splitting on features that are not clearly relevant.

• Testing of relevance of features --- “does split provide new information”:
• statistical tests ---> Section 18.3.5 R&N 𝛘2 test.

• 2)  Grow full tree, then post-prune rule post-pruning

• 3) MDL (minimal description length): 

minimize
size(tree) + size(misclassifications(tree))

Specific Techniques For Overfitting in DTs



Converting Trees to Rules
• Every decision tree corresponds to set of rules:

– IF (Patrons = None)
THEN WillWait = No

– IF (Patrons = Full) 
& (Hungry = No) 
&(Type = French)

THEN WillWait = Yes
– ...

•



Fighting Overfitting: Using Rule Post-Pruning 

1. Grow decision tree.  Fit as much data as possible.  Allow overfitting.

2. Convert tree to equivlent set of rules. One rule for each path from root to leaf.

3. Prune (generalize) each rule independently of others.
1. I.e., delete preconditions that improve accuracy (greedy)

4. Sort final rules into desired sequence depending on accuracy.

5. Use ordered sequence for classification.









Summary: When to use Decision Trees

• Instances presented as attribute-value pairs
• Method of approximating discrete-valued functions
• Target function has discrete values: classification problems

• Robust to noisy data:
• Training data may contain 

– errors
– missing attribute values

• Typical bias: prefer smaller trees (Ockham's razor )

Widely used, practical and easy to interpret results



• Inducing decision trees is one of the most widely used learning methods in practice 
• Can outperform human experts in many problems 

• Strengths include
– Fast
– simple to implement
– human readable
– can convert result to a set of easily interpretable rules
– empirically valid in many commercial products
– handles noisy data

• Weaknesses include:
– "Univariate" splits/partitioning using only one attribute at a time so limits types of 

possible trees
– large decision trees may be hard to understand
– requires fixed-length feature vectors
– non-incremental (i.e., batch method)

Can be a legal requirement! Why?


