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Wait, What is AI? What is ML?
• Alan Turing 1950, “I propose to consider the question, ’Can machines 

think?’  … I shall replace the question by another, which is closely 
related to it and is expressed in relatively unambiguous words.”  
– The Imitation Game: “… a man (A), a woman (B) and an 

interrogator (C) … The object of the game for the 
interrogator is to determine which of the other two is the 
man and which is the woman.

• John McCarthy et al. 1955, “… every aspect of learning or any other 
feature of intelligence can in principle be so precisely described that a 
machine can be made to simulate it.”

• Tessler’s Theorem: “Intelligence is what machines haven’t done yet.”
– I.e., ”If machines can do it, it isn’t intelligence.



AI for AI Researchers

• Russell and Norvig, “’artificial intelligence’ is when a machine mimics 
‘cognitive functions’ that humans associate with other human minds such 
as ‘learning’ and ‘problem solving’”
– Broadly responsible for the agent based approach: “… rational 

agents that acts so as to achieve the best outcome, or, when there is 
uncertainty, the best expected outcome.”

• Traditional Goals:
– Reasoning, Planning, and Knowledge Representation; 
– Machine Learning and Natural Language Processing;
– Perception (vision), and Embodiment (Robotics).

– All of these are in service of (for some) 
creating Artificial General Intelligence (AGI).
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Artificial General Intelligence?

• What you think of when you think of AI most of the time.

– Strong AI: program for the whole range of human cognition.
– Weak AI: narrow or domain specific tasks.

• If we can create a big enough system, we can simulate a human 
… or close enough.
– Intelligence is just a function mapping inputs to outputs.
– Is there a difference between faking it and making it?



Machine Learning
• (Depending on whom you ask, either is AI or is a subfield of AI.)

• Arthur Samuel 1959, “… give[s] computers the ability 
to learn without being explicitly programmed.”

• Tom M. Mitchell, “A computer program is said to: 
– learn from experience E 
– with respect to some class of tasks T and 
– performance measure P if 
– its performance at tasks in T as measured 

by P, improves with experience E.”



A Concrete Example: Supervised Learning
• In many domains it’s hard to build a predictive model but easy 

to collect data!

• Machine learning gives us a way to automatically infer a 
predictive model from the data.

• Given many many many examples consisting of a vector of 
features (x) and their output label (y):  ( [x1, x2, … xn](1), (y(1)) ).

Training Data

( [x1, x2, … xn](1), (y(1)) )
( [x1, x2, … xn](2), (y(2)) )
( [x1, x2, … xn](3), (y(3)) )

…

Machine Learning 
Algorithm

Hypothesis Function
y(i) ≈ h(x(i))

Prediction
(Model)

New example x…
ŷ = h(x)



Learning: Types of Feedback

• Supervised Learning.
– Learn a function from examples of its inputs and outputs.
– E.g., An agent is presented with many camera images and is 

told to learn which ones contain busses.  
– Agent learns to map from images to Boolean output 0/1 of bus 

not present/present.
– Learning decision trees is a form of supervised learning.

• Unsupervised Learning.
– Learn patterns in the input with no output values supplied.
– E.g,: Identify communities on the Internet.

• Reinforcement Learning.
– Learn from reinforcement (occasional rewards).
– E.g., An agent learns how to play backgammon or go or chess 

against itself. 8



• More
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Learning: Mitchell’s Definition

• A computer program is said to learn from:
– experience E with respect to some class of
– tasks T and
– performance measure P

• If its performance at tasks in T, as measured by P, 
improves with experience E.

• We’re going to focus on a specific of learning: 
– Learning from Examples: Special case of 

inductive learning
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Examples

• Spam Filtering:
– T: Classify Emails (HAM/SPAM)
– E: Examples (e1, HAM), (e2, SPAM), (e3, HAM), (e4, SPAM)…
– P: Prob. of mis-classification on new emails.

• Personalized Retrieval
– T: Find Documents the user wants for query.
– E: Watch documents people click on (query/click pairs).
– P: Number of Relevant Docs in Top-10

• Play Checkers:
– T: Play Checkers
– E: Games against self
– P: Winning Percentage.
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Inductive Learning Example 
Food  

(3) 
Chat  
(2) 

Fast  
(2) 

Price 
(3) 

Bar  
(2) 

BigTip 

great   yes       yes        normal          no       yes            
great   no        yes        normal          no       yes            
mediocre    yes       no         high        no       no             
great   yes       yes        normal          yes      yes             
 

Instance Space X: Set of all possible objects described by attributes 
   (often called features).  

Target Function f: Mapping from Attributes to Target Feature   
   (often called label)  (f is unknown) 

Hypothesis Space H: Set of all classification rules hi we allow. 

Training Data D: Set of instances labeled with Target Feature 



Inductive Learning / Concept Learning

• Task:
– Learn (to imitate) a function f: X -> Y

• Training Examples:
– Learning algorithm is given the correct value of the function for particular inputs.
– An example is a pair ( [x1, x2, … xn](1), (y(1)) ) where x is the input vector of features and y is 

the output of the function f applied to x.
• Goal:
– Learn a function h: X -> Y that approximates f: X -> Y as well as possible.

Training Data

( [x1, x2, … xn](1), (y(1)) )
( [x1, x2, … xn](2), (y(2)) )
( [x1, x2, … xn](3), (y(3)) )

…

Machine Learning 
Algorithm

Hypothesis Function
y(i) ≈ h(x(i))

Prediction
(Model)

New example x…
ŷ = h(x)



Classification v. Regression

• Naming:
– If Y is a discrete set, then we call it Classification.
– If Y is not a discrete set, then we call it Regression.

• Examples:
– Steering a vehicle… 

– road images -> direction to turn wheel (distance).
– Medical Diagnosis… 

– patient symptoms -> has/does not have disease.
– Forensic Hair Comparison…

– Image of two haris -> match or not.
– Stock Market Prediction: 

– closing price of last few days -> market will go up or down (how much?)
– Noun Phrase Coreference: 

– description of two things in document -> same entity?
15
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Inductive Learning Algorithm 

Task: 
–  Given: collection of examples 
–  Return: a function h (hypothesis) that approximates f 

Inductive Learning Hypothesis:  
Any hypothesis found to approximate the target function well over 
a sufficiently large set of training examples will also approximate 
the target function well over any other unobserved examples. 

Assumptions of Inductive Learning: 
–  The training sample represents the population 
–  The input features permit discrimination 

 



17

Inductive Learning Setting 

Task: 
Learner (or inducer) induces a general rule h from a set of observed examples that 

classifies new examples accurately. An algorithm that takes as input specific 
instances and produces a model that generalizes beyond these instances. 

Classifier - A mapping from unlabeled instances to (discrete) classes.  
 
Classifiers have a form (e.g., decision tree) plus an interpretation procedure (including 

how to handle unknowns, etc.)  
 

New examples 

h: X ! Y  
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Inductive learning method 

Fitting a function of a single variable to some data points 
  Examples are (x, f(x) pairs; 
  Hypothesis space H – set of hypotheses we will consider for 

   function f, in this case polynomials of degree at most k  
Construct/adjust h to agree with f on training set 
(h is consistent if it agrees with f on all examples) 
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Multiple consistent hypotheses? 

Linear hypothesis Degree 7 polynomial 
hypothesis 

Degree 6 polynomial 
and approximate linear fit 

Sinusoidal hypothesis 

How to choose from among  
multiple consistent hypotheses? 

Ockham's razor: maximize a combination 
 of consistency and simplicity 

Polynomials of degree at most k  
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Preference Bias: Ockham's Razor 

Aka Occam�s Razor, Law of Economy, or Law of Parsimony 
Principle stated by William of Ockham (1285-1347/49), an English philosopher, that  

–  �non sunt multiplicanda entia praeter necessitatem�� 
–  or, entities are not to be  multiplied beyond necessity.  

The simplest explanation that is consistent with all observations is the best.  
–  E.g, the smallest decision tree that correctly classifies all of the training examples 

is the best.  
–  Finding the provably smallest decision tree is NP-Hard, so instead of constructing 

the absolute smallest tree consistent with the training examples, construct one 
that is pretty small.  
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Different Hypothesis Spaces    

Learning can be seen as fitting a function to the data. We can consider  
different functions as the target function and therefore different hypothesis  
spaces. Examples: 
 
Propositional if-then rules 
Decision Trees 
First-order if-then rules  
First-order logic  theory 
Linear functions 
Polynomials of  degree at most k 
Neural networks  
Java programs 
Etc  
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Tradeoff in expressiveness and complexity 

A learning problem is realizable  if its hypothesis space contains 
the true function. 

 

Why not pick the largest possible hypothesis  
space, say the class of all Turing machines?  

Tradeoff between expressiveness of a hypothesis space  
and the complexity of finding simple, consistent hypotheses 

within the space (also risk of “overfitting”). 
Extreme overfitting: Just remember all training examples. 



Semantics: Text classification

• Is it spam?
• Who wrote this paper?  (Author identification)
• https://en.wikipedia.org/wiki/The_Federalist_Papers#Authorship
• https://www.uwgb.edu/dutchs/pseudosc/hidncode.htm
• ¡Identificación del idioma!
• Sentiment analysis
• What type of document is this?
• When was this document written?
• Readability assessment

23
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Text classification

• Input:
• A document w
• A set of classes Y = {y1, y2, …, yJ}

• Output:
• A predicted class y ∈ Y

• (You will spend much more time on classification problems throughout the program, this is 
just a light intro!)
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Text classification

• Hand-coded rules based on combinations of terms (and possibly 
other context)

• If email w:
• Sent from a DNSBL (DNS blacklist) OR
• Contains “Nigerian prince” OR
• Contains URL with Unicode OR …
• Then: yw = spam
• Pros:  ?????????
• Domain expertise, human-understandable
• Cons:  ?????????
• Brittle, expensive to maintain, overly conservative

25



Text classification

• Input:
• A document w
• A set of classes Y = {y1, y2, …, yJ}
• A training set of m hand-labeled documents

{(w1, y1), (w2, y2), …, (wm, ym)}

• Output:
• A learned classifier w à y

• This is an example of supervised learning

26



Representing a document “in math”
• Simplest method: bag of words

• Represent each document as a vector of word frequencies
• Order of words does not matter, just #occurrences

27



Bag of words Example

• the quick brown fox jumps over the lazy dog
• I am he as you are he as you are me
• he said the CMSC320 is 189 more CMSCs than the CMSC131

28

th
e

C
M

SC
32

0

yo
u

he I qu
ic

k

do
g

m
e

C
M

SC
s

… th
an

2 0 0 0 0 1 1 0 0

…

0
0 0 2 2 1 0 0 1 0 0
2 1 0 1 0 0 0 0 1 1

Document 1
Document 2
Document 3



Term Frequency

• Term frequency: the number of times a term appears in a specific document 
• tfij: frequency of word j in document i
• This can be the raw count (like in the BOW in the last slide):
• tfij ∈ {0,1} if word j appears or doesn’t appear in doc i
• log(1 + tfij) – reduce the effect of outliers
• tfij / maxj tfij – normalize by document i’s most frequent word
• What can we do with this?
• Use as features to learn a classifier w à y …!

29



Defining features From Term Frequency

• Suppose we are classifying if a document was written by The 
Beatles or not (i.e., binary classification):

• Two classes y ∈ Y = { 0, 1 } = { not_beatles, beatles }
• Let’s use tfij ∈ {0,1}, which gives:

• Then represent documents with a feature function:
f(x, y = not_beatles = 0) = [xT, 0T, 1]T

f(x, y = beatles = 1) = [0T, xT, 1]T
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Linear classification

• We can then define weights θ for each feature
• θ = { <CMSC320, not_beatles> = +1,

<CMSC320, beatles> = -1,
<walrus, not_beatles> = -0.3,
<walrus, beatles> = +1,
<the, not_beatles> = 0,
<the, beatles>, 0, … }

• Write weights as vector that aligns with feature mapping
• Score 𝝍 of an instance x and class y is the sum of the weights for 

the features in that class:
• 𝝍xy = Σ θn fn(x, y)
• = θT f(x, y)

31



Linear classification

• We have a feature function f(x, y) and a score 𝝍xy = θT f(x, y)

32

ŷ = argmax
y

✓|f(x, y)

For each class y ∈ { not_beatles, beatles }

Compute the score of the document 
for that class

And return the class with 
highest score!

Where did these weights 
come from? We’ll talk 
about this in the ML 
lectures …

(… and also this whole 
“linear classifier” thing.)



Explicit Example

• We are interested in classifying documents into one of two 
classes y ∈ Y = { 0, 1 } = { hates_cats, likes_cats}

• Document 1: I like cats
• Document 2: I hate cats

• Now, represent documents with a feature function:
f(x, y = hates_cats = 0) = [xT, 0T, 1]T

f(x, y = likes_cats = 1) = [0T, xT, 1]T
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Explicit Example
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0 0 0 0 1 1 0 1 1
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0 0 0 0 1 0 1 1 1

I lik
e

ha
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1 1 0 1
1 0 1 1

x1T =
x2T =

y1 = ?
y2 = ?

f(x1, y = hates_cats = 0) =
f(x1, y = likes_cats = 1) =

f(x2, y = hates_cats = 0) =
f(x2, y = likes_cats = 1) =

f(x, y = 0) = [xT, 0T, 
1]T

f(x, y = 1) = [0T, xT, 
1]T

y=0: hates_cats y=1: likes_cats (1)



Explicit Example

• Now, assume we have weights θ for each feature
• θ = { <I, hates_cats> = 0, <I, likes_cats> = 0,
• <like, hates_cats> = -1, <like, likes_cats> = +1,
• <hate, hates_cats> = +1, <hate, likes_cats> = -1,
• <cats, hates_cats> = -0.1, <cats, likes_cats = +0.5> }

• Write weights as vector that aligns with feature mapping:

35

I lik
e

ha
te

ca
ts

I lik
e

ha
te

ca
ts

--

1 1 0 1 0 0 0 0 1
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f(x1, y = hates_cats = 0) =
f(x1, y = likes_cats = 1) =

f(x2, y = hates_cats = 0) =
f(x2, y = likes_cats = 1) =

0 -1 1 -0.1 0 1 -1 0.5 1Parameter vector θ T =
y=0: hates_cats y=1: likes_cats (1)



Explicit example

• Score 𝝍 of an instance x and class y is the sum of the 
weights for the features in that class:

• 𝝍xy = Σ θn fn(x, y)
• = θT f(x, y)
• Let’s compute 𝝍x1,y=hates_cats …
• 𝝍x1,y=hates_cats = θT f(x1, y = hates_cats = 0)
• = 0*1 + -1*1 + 1*0 + -0.1*1 + 0*0 + 1*0 + -1*0 + 0.5*0 + 1*1

• = -1 - 0.1 + 1 = -0.1

36
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Explicit example

• Saving the boring stuff:
• 𝝍x1,y=hates_cats = -0.1; 𝝍x1,y=likes_cats = +2.5
• 𝝍x2,y=hates_cats = +1.9; 𝝍x2,y=likes_cats = +0.5
• We want to predict the class of each document:

• Document 1: argmax{ 𝝍x1,y=hates_cats, 𝝍x1,y=likes_cats }   ????????
• Document 2: argmax{ 𝝍x2,y=hates_cats, 𝝍x2,y=likes_cats }   ????????
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Document 1: I like cats

Document 2: I hate cats

ŷ = argmax
y

✓|f(x, y)



Inverse Document Frequency

• Recall:
• tfij: frequency of word j in document i
• Any issues with this ??????????
• Term frequency gets overloaded by common words
• Inverse Document Frequency (IDF): weight individual words negatively by how frequently 

they appear in the corpus:

• IDF is just defined for a word j, not word/document pair j, i

38

idfj = log

✓
#documents

#documents with word j

◆



Inverse Document Frequency
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TF-IDF
• How do we use the IDF weights?
• Term frequency inverse document frequency (TF-IDF):
• TF-IDF score: tfij x idfj

• This ends up working better than raw scores for classification and for computing similarity between 
documents.
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