
Introduction to
Machine Learning
Nicholas Mattei, Tulane University
CMPS3660 – Introduction to Data Science – Fall 2019
https://rebrand.ly/TUDataScience

Many Thanks
Slides based off Introduction to Data Science from John P. Dickerson -
https://cmsc320.github.io/

Thanks to Bart Selman [Cornell] and
Zico Kolter [CMU]

https://rebrand.ly/TUDataScience
https://cmsc320.github.io/

The Data LifeCycle

Data
Collection

Data
Processing

Exploratory
Analysis

&
Data

Visualization

Analysis,
Hypothesis

Testing,
& ML

Insight
&

Policy
Decision

Today

2

Wait, What is AI? What is ML?
• Alan Turing 1950, “I propose to consider the question, ’Can machines

think?’ … I shall replace the question by another, which is closely
related to it and is expressed in relatively unambiguous words.”
– The Imitation Game: “… a man (A), a woman (B) and an

interrogator (C) … The object of the game for the
interrogator is to determine which of the other two is the
man and which is the woman.

• John McCarthy et al. 1955, “… every aspect of learning or any other
feature of intelligence can in principle be so precisely described that a
machine can be made to simulate it.”

• Tessler’s Theorem: “Intelligence is what machines haven’t done yet.”
– I.e., ”If machines can do it, it isn’t intelligence.

AI for AI Researchers

• Russell and Norvig, “’artificial intelligence’ is when a machine mimics
‘cognitive functions’ that humans associate with other human minds such
as ‘learning’ and ‘problem solving’”
– Broadly responsible for the agent based approach: “… rational

agents that acts so as to achieve the best outcome, or, when there is
uncertainty, the best expected outcome.”

• Traditional Goals:
– Reasoning, Planning, and Knowledge Representation;
– Machine Learning and Natural Language Processing;
– Perception (vision), and Embodiment (Robotics).

– All of these are in service of (for some)
creating Artificial General Intelligence (AGI).

A
ge

nt

Environm
ent

Sensors

Actuators

Artificial General Intelligence?

• What you think of when you think of AI most of the time.

– Strong AI: program for the whole range of human cognition.
– Weak AI: narrow or domain specific tasks.

• If we can create a big enough system, we can simulate a human
… or close enough.
– Intelligence is just a function mapping inputs to outputs.
– Is there a difference between faking it and making it?

Machine Learning
• (Depending on whom you ask, either is AI or is a subfield of AI.)

• Arthur Samuel 1959, “… give[s] computers the ability
to learn without being explicitly programmed.”

• Tom M. Mitchell, “A computer program is said to:
– learn from experience E
– with respect to some class of tasks T and
– performance measure P if
– its performance at tasks in T as measured

by P, improves with experience E.”

A Concrete Example: Supervised Learning
• In many domains it’s hard to build a predictive model but easy

to collect data!

• Machine learning gives us a way to automatically infer a
predictive model from the data.

• Given many many many examples consisting of a vector of
features (x) and their output label (y): ([x1, x2, … xn](1), (y(1))).

Training Data

([x1, x2, … xn](1), (y(1)))
([x1, x2, … xn](2), (y(2)))
([x1, x2, … xn](3), (y(3)))

…

Machine Learning
Algorithm

Hypothesis Function
y(i) ≈ h(x(i))

Prediction
(Model)

New example x…
ŷ = h(x)

Learning: Types of Feedback

• Supervised Learning.
– Learn a function from examples of its inputs and outputs.
– E.g., An agent is presented with many camera images and is

told to learn which ones contain busses.
– Agent learns to map from images to Boolean output 0/1 of bus

not present/present.
– Learning decision trees is a form of supervised learning.

• Unsupervised Learning.
– Learn patterns in the input with no output values supplied.
– E.g,: Identify communities on the Internet.

• Reinforcement Learning.
– Learn from reinforcement (occasional rewards).
– E.g., An agent learns how to play backgammon or go or chess

against itself. 8

• More

9

10

Learning: Mitchell’s Definition

• A computer program is said to learn from:
– experience E with respect to some class of
– tasks T and
– performance measure P

• If its performance at tasks in T, as measured by P,
improves with experience E.

• We’re going to focus on a specific of learning:
– Learning from Examples: Special case of

inductive learning

11

Examples

• Spam Filtering:
– T: Classify Emails (HAM/SPAM)
– E: Examples (e1, HAM), (e2, SPAM), (e3, HAM), (e4, SPAM)…
– P: Prob. of mis-classification on new emails.

• Personalized Retrieval
– T: Find Documents the user wants for query.
– E: Watch documents people click on (query/click pairs).
– P: Number of Relevant Docs in Top-10

• Play Checkers:
– T: Play Checkers
– E: Games against self
– P: Winning Percentage.

12

13

Inductive Learning Example
Food

(3)
Chat
(2)

Fast
(2)

Price
(3)

Bar
(2)

BigTip

great yes yes normal no yes
great no yes normal no yes
mediocre yes no high no no
great yes yes normal yes yes

Instance Space X: Set of all possible objects described by attributes
 (often called features).

Target Function f: Mapping from Attributes to Target Feature
 (often called label) (f is unknown)

Hypothesis Space H: Set of all classification rules hi we allow.

Training Data D: Set of instances labeled with Target Feature

Inductive Learning / Concept Learning

• Task:
– Learn (to imitate) a function f: X -> Y

• Training Examples:
– Learning algorithm is given the correct value of the function for particular inputs.
– An example is a pair ([x1, x2, … xn](1), (y(1))) where x is the input vector of features and y is

the output of the function f applied to x.
• Goal:
– Learn a function h: X -> Y that approximates f: X -> Y as well as possible.

Training Data

([x1, x2, … xn](1), (y(1)))
([x1, x2, … xn](2), (y(2)))
([x1, x2, … xn](3), (y(3)))

…

Machine Learning
Algorithm

Hypothesis Function
y(i) ≈ h(x(i))

Prediction
(Model)

New example x…
ŷ = h(x)

Classification v. Regression

• Naming:
– If Y is a discrete set, then we call it Classification.
– If Y is not a discrete set, then we call it Regression.

• Examples:
– Steering a vehicle…

– road images -> direction to turn wheel (distance).
– Medical Diagnosis…

– patient symptoms -> has/does not have disease.
– Forensic Hair Comparison…

– Image of two haris -> match or not.
– Stock Market Prediction:

– closing price of last few days -> market will go up or down (how much?)
– Noun Phrase Coreference:

– description of two things in document -> same entity?
15

16
18

Inductive Learning Algorithm

Task:
–  Given: collection of examples
–  Return: a function h (hypothesis) that approximates f

Inductive Learning Hypothesis:
Any hypothesis found to approximate the target function well over
a sufficiently large set of training examples will also approximate
the target function well over any other unobserved examples.

Assumptions of Inductive Learning:
–  The training sample represents the population
–  The input features permit discrimination

17

Inductive Learning Setting

Task:
Learner (or inducer) induces a general rule h from a set of observed examples that

classifies new examples accurately. An algorithm that takes as input specific
instances and produces a model that generalizes beyond these instances.

Classifier - A mapping from unlabeled instances to (discrete) classes.

Classifiers have a form (e.g., decision tree) plus an interpretation procedure (including

how to handle unknowns, etc.)

New examples

h: X ! Y

18
21

Inductive learning method

Fitting a function of a single variable to some data points
 Examples are (x, f(x) pairs;
 Hypothesis space H – set of hypotheses we will consider for

 function f, in this case polynomials of degree at most k
Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

19
22

Multiple consistent hypotheses?

Linear hypothesis Degree 7 polynomial
hypothesis

Degree 6 polynomial
and approximate linear fit

Sinusoidal hypothesis

How to choose from among
multiple consistent hypotheses?

Ockham's razor: maximize a combination
 of consistency and simplicity

Polynomials of degree at most k

20
23

Preference Bias: Ockham's Razor

Aka Occam�s Razor, Law of Economy, or Law of Parsimony
Principle stated by William of Ockham (1285-1347/49), an English philosopher, that

–  �non sunt multiplicanda entia praeter necessitatem��
–  or, entities are not to be multiplied beyond necessity.

The simplest explanation that is consistent with all observations is the best.
–  E.g, the smallest decision tree that correctly classifies all of the training examples

is the best.
–  Finding the provably smallest decision tree is NP-Hard, so instead of constructing

the absolute smallest tree consistent with the training examples, construct one
that is pretty small.

21
24

Different Hypothesis Spaces

Learning can be seen as fitting a function to the data. We can consider
different functions as the target function and therefore different hypothesis
spaces. Examples:

Propositional if-then rules
Decision Trees
First-order if-then rules
First-order logic theory
Linear functions
Polynomials of degree at most k
Neural networks
Java programs
Etc

22
25

Tradeoff in expressiveness and complexity

A learning problem is realizable if its hypothesis space contains
the true function.

Why not pick the largest possible hypothesis
space, say the class of all Turing machines?

Tradeoff between expressiveness of a hypothesis space
and the complexity of finding simple, consistent hypotheses

within the space (also risk of “overfitting”).
Extreme overfitting: Just remember all training examples.

Semantics: Text classification

• Is it spam?
• Who wrote this paper? (Author identification)
• https://en.wikipedia.org/wiki/The_Federalist_Papers#Authorship
• https://www.uwgb.edu/dutchs/pseudosc/hidncode.htm
• ¡Identificación del idioma!
• Sentiment analysis
• What type of document is this?
• When was this document written?
• Readability assessment

23

https://en.wikipedia.org/wiki/The_Federalist_Papers
https://www.uwgb.edu/dutchs/pseudosc/hidncode.htm

Text classification

• Input:
• A document w
• A set of classes Y = {y1, y2, …, yJ}

• Output:
• A predicted class y ∈ Y

• (You will spend much more time on classification problems throughout the program, this is
just a light intro!)

24

Text classification

• Hand-coded rules based on combinations of terms (and possibly
other context)

• If email w:
• Sent from a DNSBL (DNS blacklist) OR
• Contains “Nigerian prince” OR
• Contains URL with Unicode OR …
• Then: yw = spam
• Pros: ?????????
• Domain expertise, human-understandable
• Cons: ?????????
• Brittle, expensive to maintain, overly conservative

25

Text classification

• Input:
• A document w
• A set of classes Y = {y1, y2, …, yJ}
• A training set of m hand-labeled documents

{(w1, y1), (w2, y2), …, (wm, ym)}

• Output:
• A learned classifier w à y

• This is an example of supervised learning

26

Representing a document “in math”
• Simplest method: bag of words

• Represent each document as a vector of word frequencies
• Order of words does not matter, just #occurrences

27

Bag of words Example

• the quick brown fox jumps over the lazy dog
• I am he as you are he as you are me
• he said the CMSC320 is 189 more CMSCs than the CMSC131

28

th
e

C
M

SC
32

0

yo
u

he I qu
ic

k

do
g

m
e

C
M

SC
s

… th
an

2 0 0 0 0 1 1 0 0

…

0
0 0 2 2 1 0 0 1 0 0
2 1 0 1 0 0 0 0 1 1

Document 1
Document 2
Document 3

Term Frequency

• Term frequency: the number of times a term appears in a specific document
• tfij: frequency of word j in document i
• This can be the raw count (like in the BOW in the last slide):
• tfij ∈ {0,1} if word j appears or doesn’t appear in doc i
• log(1 + tfij) – reduce the effect of outliers
• tfij / maxj tfij – normalize by document i’s most frequent word
• What can we do with this?
• Use as features to learn a classifier w à y …!

29

Defining features From Term Frequency

• Suppose we are classifying if a document was written by The
Beatles or not (i.e., binary classification):

• Two classes y ∈ Y = { 0, 1 } = { not_beatles, beatles }
• Let’s use tfij ∈ {0,1}, which gives:

• Then represent documents with a feature function:
f(x, y = not_beatles = 0) = [xT, 0T, 1]T

f(x, y = beatles = 1) = [0T, xT, 1]T

30

th
e

C
M

SC
32

0

yo
u

he I qu
ic

k

do
g

m
e

C
M

SC
s

… th
an

1 0 0 0 0 1 1 0 0

…

0
0 0 1 1 1 0 0 1 0 0
1 1 0 1 0 0 0 0 1 1

x1T =
x2

T =
x3

T =

y1 = 0
y2 = 1
y3 = 0

Linear classification

• We can then define weights θ for each feature
• θ = { <CMSC320, not_beatles> = +1,

<CMSC320, beatles> = -1,
<walrus, not_beatles> = -0.3,
<walrus, beatles> = +1,
<the, not_beatles> = 0,
<the, beatles>, 0, … }

• Write weights as vector that aligns with feature mapping
• Score 𝝍 of an instance x and class y is the sum of the weights for

the features in that class:
• 𝝍xy = Σ θn fn(x, y)
• = θT f(x, y)

31

Linear classification

• We have a feature function f(x, y) and a score 𝝍xy = θT f(x, y)

32

ŷ = argmax
y

✓|f(x, y)

For each class y ∈ { not_beatles, beatles }

Compute the score of the document
for that class

And return the class with
highest score!

Where did these weights
come from? We’ll talk
about this in the ML
lectures …

(… and also this whole
“linear classifier” thing.)

Explicit Example

• We are interested in classifying documents into one of two
classes y ∈ Y = { 0, 1 } = { hates_cats, likes_cats}

• Document 1: I like cats
• Document 2: I hate cats

• Now, represent documents with a feature function:
f(x, y = hates_cats = 0) = [xT, 0T, 1]T

f(x, y = likes_cats = 1) = [0T, xT, 1]T

33

I lik
e

ha
te

ca
ts

1 1 0 1
1 0 1 1

x1T =
x2

T =
y1 = ?
y2 = ?

Explicit Example

34

I lik
e

ha
te

ca
ts

I lik
e

ha
te

ca
ts

--

1 1 0 1 0 0 0 0 1
0 0 0 0 1 1 0 1 1
1 0 1 1 0 0 0 0 1
0 0 0 0 1 0 1 1 1

I lik
e

ha
te

ca
ts

1 1 0 1
1 0 1 1

x1T =
x2T =

y1 = ?
y2 = ?

f(x1, y = hates_cats = 0) =
f(x1, y = likes_cats = 1) =

f(x2, y = hates_cats = 0) =
f(x2, y = likes_cats = 1) =

f(x, y = 0) = [xT, 0T,
1]T

f(x, y = 1) = [0T, xT,
1]T

y=0: hates_cats y=1: likes_cats (1)

Explicit Example

• Now, assume we have weights θ for each feature
• θ = { <I, hates_cats> = 0, <I, likes_cats> = 0,
• <like, hates_cats> = -1, <like, likes_cats> = +1,
• <hate, hates_cats> = +1, <hate, likes_cats> = -1,
• <cats, hates_cats> = -0.1, <cats, likes_cats = +0.5> }

• Write weights as vector that aligns with feature mapping:

35

I lik
e

ha
te

ca
ts

I lik
e

ha
te

ca
ts

--

1 1 0 1 0 0 0 0 1
0 0 0 0 1 1 0 1 1
1 0 1 1 0 0 0 0 1
0 0 0 0 1 0 1 1 1

f(x1, y = hates_cats = 0) =
f(x1, y = likes_cats = 1) =

f(x2, y = hates_cats = 0) =
f(x2, y = likes_cats = 1) =

0 -1 1 -0.1 0 1 -1 0.5 1Parameter vector θ T =
y=0: hates_cats y=1: likes_cats (1)

Explicit example

• Score 𝝍 of an instance x and class y is the sum of the
weights for the features in that class:

• 𝝍xy = Σ θn fn(x, y)
• = θT f(x, y)
• Let’s compute 𝝍x1,y=hates_cats …
• 𝝍x1,y=hates_cats = θT f(x1, y = hates_cats = 0)
• = 0*1 + -1*1 + 1*0 + -0.1*1 + 0*0 + 1*0 + -1*0 + 0.5*0 + 1*1

• = -1 - 0.1 + 1 = -0.1

36

0 -1 1 -0.1 0 1 -1 0.5 1θ T =

hates_cats
likes_cats

(1)
1 I
1 like
0 hate
1 cats
0 I
0 like
0 hate
0 cats
1 –
f(x1, y = 0)

Explicit example

• Saving the boring stuff:
• 𝝍x1,y=hates_cats = -0.1; 𝝍x1,y=likes_cats = +2.5
• 𝝍x2,y=hates_cats = +1.9; 𝝍x2,y=likes_cats = +0.5
• We want to predict the class of each document:

• Document 1: argmax{ 𝝍x1,y=hates_cats, 𝝍x1,y=likes_cats } ????????
• Document 2: argmax{ 𝝍x2,y=hates_cats, 𝝍x2,y=likes_cats } ????????

37

Document 1: I like cats

Document 2: I hate cats

ŷ = argmax
y

✓|f(x, y)

Inverse Document Frequency

• Recall:
• tfij: frequency of word j in document i
• Any issues with this ??????????
• Term frequency gets overloaded by common words
• Inverse Document Frequency (IDF): weight individual words negatively by how frequently

they appear in the corpus:

• IDF is just defined for a word j, not word/document pair j, i

38

idfj = log

✓
#documents

#documents with word j

◆

Inverse Document Frequency

39

th
e

C
M

SC
32

0

yo
u

he I qu
ic

k

do
g

m
e

C
M

SC
s

… th
an

2 0 0 0 0 1 1 0 0

…

0
0 0 2 2 1 0 0 1 0 0
2 1 0 1 0 0 0 0 1 1

Document 1
Document 2
Document 3

idfthe = log

✓
3

2

◆
= 0.405

idfCMSC320 = log

✓
3

1

◆
= 1.098

idfyou = log

✓
3

1

◆
= 1.098

idfhe = log

✓
3

2

◆
= 0.405

TF-IDF
• How do we use the IDF weights?
• Term frequency inverse document frequency (TF-IDF):
• TF-IDF score: tfij x idfj

• This ends up working better than raw scores for classification and for computing similarity between
documents.

40

th
e

C
M

SC
32

0

yo
u

he I qu
ic

k

do
g

m
e

C
M

SC
s

… th
an

0.8 0 0 0 0 1.1 1.1 0 0

…

0
0 0 2.2 0.8 1.1 0 0 1.1 0 0
0.8 1.1 0 0.4 0 0 0 0 1.1 1.1

Document 1
Document 2
Document 3

