

Introduction to Machine Learning

Nicholas Mattei, *Tulane University CMPS3660 – Introduction to Data Science – Fall 2019* <u>https://rebrand.ly/TUDataScience</u>

Thanks to Bart Selman [Cornell] and Zico Kolter [CMU]

<u>Many Thanks</u> Slides based off Introduction to Data Science from John P. Dickerson -<u>https://cmsc320.github.io/</u>

The Data LifeCycle

Wait, What is AI? What is ML?

- Alan Turing 1950, "I propose to consider the question, 'Can machines think?' ... I shall replace the question by another, which is closely related to it and is expressed in relatively unambiguous words."
 - The Imitation Game: "... a man (A), a woman (B) and an interrogator (C) ... The object of the game for the interrogator is to determine which of the other two is the man and which is the woman.
- John McCarthy et al. 1955, "... every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it."
- **Tessler's Theorem:** "Intelligence is what machines haven't done yet."
 - I.e., "If machines can do it, it isn't intelligence.

Environment

AI for AI Researchers

- **Russell and Norvig**, "'artificial intelligence' is when a machine mimics 'cognitive functions' that humans associate with other human minds such as 'learning' and 'problem solving'"
 - Broadly responsible for the agent based approach: "… rational agents that acts so as to achieve the best outcome, or, when there is uncertainty, the best expected outcome."
- Traditional Goals:
 - Reasoning, Planning, and Knowledge Representation;
 - Machine Learning and Natural Language Processing;
 - Perception (vision), and Embodiment (Robotics).
 - All of these are in service of (for some) creating Artificial General Intelligence (AGI).

Artificial General Intelligence?

- What you think of when you think of *AI* most of the time.
 - **Strong AI:** program for the whole range of human cognition.
 - Weak AI: narrow or domain specific tasks.
- *If* we can create a big enough system, we can simulate a human ... or close enough.
 - Intelligence is just a function mapping inputs to outputs.
 - Is there a difference between faking it and making it?

```
> Hello, I am Eliza.
* I am afraid.
> How long have you been afraid?
* Since midterms.
> Tell me more...
* I am afraid that I will fail
my course.
> Do you enjoy being afraid that
you will fail your course?
```


Machine Learning

- (Depending on whom you ask, either is AI or is a subfield of AI.)
- Arthur Samuel 1959, "... give[s] computers the ability to learn without being explicitly programmed."

- Tom M. Mitchell, "A computer program is said to:
 - learn from experience *E*
 - with respect to some class of tasks *T* and
 - performance measure *P* if
 - its performance at tasks in *T* as measured by *P*, improves with experience E."

A Concrete Example: Supervised Learning

- In many domains it's hard to build a predictive model but easy to collect data!
- Machine learning gives us a way to automatically infer a predictive model from the data.
- Given many many many examples consisting of a vector of *features* (*x*) and their output label (*y*): ([*x*₁, *x*₂, ... *x_n*]⁽¹⁾, (*y*⁽¹⁾)).

Learning: Types of Feedback

- Supervised Learning.
 - Learn a **function** from examples of its inputs and outputs.
 - E.g., An agent is presented with many camera images and is told to learn which ones contain busses.
 - Agent learns to map from images to Boolean output 0/1 of bus not present/present.
 - Learning decision trees is a form of supervised learning.
- Unsupervised Learning.
 - Learn patterns in the input with no output values supplied.
 - E.g,: Identify communities on the Internet.
- Reinforcement Learning.
 - Learn from reinforcement (occasional rewards).
 - E.g., An agent learns how to play backgammon or go or chess against itself.

Learning: Mitchell's Definition

- A computer program is said to learn from:
 - experience *E* with respect to some class of
 - tasks *T* and
 - performance measure P
- If its performance at tasks in *T*, as measured by *P*, improves with experience *E*.
- We're going to focus on a specific of learning:
 - Learning from Examples: Special case of inductive learning

Examples

- Spam Filtering:
 - T: Classify Emails (HAM/SPAM)
 - E: Examples (e1, HAM), (e2, SPAM), (e3, HAM), (e4, SPAM)...
 - P: Prob. of mis-classification on new emails.
- Personalized Retrieval
 - T: Find Documents the user wants for query.
 - E: Watch documents people click on (query/click pairs).
 - P: Number of Relevant Docs in Top-10
- Play Checkers:
 - T: Play Checkers
 - E: Games against self
 - P: Winning Percentage.

Inductive Learning Example

Food	Chat	Fast	Price	Bar	BigTip
_ (3)	(2)	(2)	(3)	(2)	
great	yes	yes	normal	no	yes
great	no	yes	normal	no	yes
mediocre	yes	no	high	no	no
great	yes	yes	normal	yes	yes

Instance Space X: Set of all possible objects described by attributes (often called features).

Target Function f: Mapping from Attributes to Target Feature (often called label) (f is unknown)

Hypothesis Space H: Set of all classification rules h_i we allow.

Training Data D: Set of instances labeled with Target Feature

Inductive Learning / Concept Learning

- Task:
 - Learn (to imitate) a function *f*: *X* -> *Y*
- Training Examples:
 - Learning algorithm is given the correct value of the function for particular inputs.
 - An example is a pair ($[x_1, x_2, ..., x_n]^{(1)}$, $(y^{(1)})$) where x is the input vector of *features* and y is the output of the function f applied to x.
- Goal:
 - Learn a function h: X -> Y that approximates f: X -> Y as well as possible.

Classification v. Regression

- Naming:
 - If *Y* is a discrete set, then we call it **Classification**.
 - If *Y* is not a discrete set, then we call it **Regression**.
- Examples:
 - Steering a vehicle...
 - road images -> direction to turn wheel (distance).
 - Medical Diagnosis...
 - patient symptoms -> has/does not have disease.
 - Forensic Hair Comparison...
 - Image of two haris -> match or not.
 - Stock Market Prediction:
 - closing price of last few days -> market will go up or down (how much?)
 - Noun Phrase Coreference:
 - description of two things in document -> same entity?

Inductive Learning Algorithm

Task:

- Given: collection of examples
- Return: a function h (hypothesis) that approximates f

Inductive Learning Hypothesis:

Any hypothesis found to approximate the target function well over a sufficiently large set of training examples will also approximate the target function well over any other unobserved examples.

Assumptions of Inductive Learning:

- The training sample represents the population
- The input features permit discrimination

Inductive Learning Setting

Learner (or inducer) induces a general rule h from a set of observed examples that classifies new examples accurately. An algorithm that takes as input specific instances and produces a model that generalizes beyond these instances.

Classifier - A mapping from unlabeled instances to (discrete) classes.

Classifiers have a form (e.g., decision tree) plus an interpretation procedure (including how to handle unknowns, etc.)

Inductive learning method

Fitting a function of a single variable to some data points

Examples are (x, f(x) pairs; Hypothesis space H – set of hypotheses we will consider for function f, in this case **polynomials of degree at most k**

Construct/adjust h to agree with f on training set

(*h* is consistent if it agrees with *f* on all examples)

Multiple consistent hypotheses?

Polynomials of degree at most k

Sinusoidal hypothesis

Preference Bias: Ockham's Razor

Aka Occam's Razor, Law of Economy, or Law of Parsimony

Principle stated by William of Ockham (1285-1347/49), an English philosopher, that

- "non sunt multiplicanda entia praeter necessitatem"
- or, entities are not to be multiplied beyond necessity.

The simplest explanation that is consistent with all observations is the best.

- E.g, the smallest decision tree that correctly classifies all of the training examples is the best.
- Finding the provably smallest decision tree is NP-Hard, so instead of constructing the absolute smallest tree consistent with the training examples, construct one that is pretty small.

Different Hypothesis Spaces

Learning can be seen as fitting a function to the data. We can consider different functions as the target function and therefore different hypothesis spaces. Examples:

Propositional if-then rules Decision Trees First-order if-then rules First-order logic theory Linear functions Polynomials of degree at most k Neural networks Java programs Etc

Tradeoff in expressiveness and complexity

A learning problem is realizable if its hypothesis space contains the true function.

Why not pick the largest possible hypothesis space, say the class of all Turing machines?

Tradeoff between expressiveness of a hypothesis space and the complexity of finding simple, consistent hypotheses within the space (also risk of "overfitting"). Extreme overfitting: Just remember all training examples.

Semantics: Text classification

- Is it spam?
- Who wrote this paper? (Author identification)
- <u>https://en.wikipedia.org/wiki/The_Federalist_Papers#Authorship</u>
- <u>https://www.uwgb.edu/dutchs/pseudosc/hidncode.htm</u>
- ¡Identificación del idioma!
- Sentiment analysis
- What type of document is this?
- When was this document written?
- Readability assessment

Text classification

- Input:
- A document *w*
- A set of classes $Y = \{y_1, y_2, ..., y_J\}$
- Output:
- A predicted class $y \in Y$
- (You will spend much more time on classification problems throughout the program, this is just a light intro!)

Text classification

- Hand-coded rules based on combinations of terms (and possibly other context)
- If email *w*:
- Sent from a DNSBL (DNS blacklist) OR
- Contains "Nigerian prince"
 OR
- Contains URL with Unicode
 OR ...
- Then: $y_w = spam$
- Pros: ????????
- Domain expertise, human-understandable
- Cons: ????????
- Brittle, expensive to maintain, overly conservative

Text classification

- Input:
- A document *w*
- A set of classes $Y = \{y_1, y_2, ..., y_J\}$
- A training set of *m* hand-labeled documents $\{(w_1, y_1), (w_2, y_2), \dots, (w_m, y_m)\}$
- Output:
- A learned classifier $w \rightarrow y$
- This is an example of supervised learning

Representing a document "in math"

• Simplest method: bag of words

Bag of words Example

- the quick brown fox jumps over the lazy dog
- I am he as you are he as you are me
- he said the CMSC320 is 189 more CMSCs than the CMSC131

Term Frequency

- Term frequency: the number of times a term appears in a specific document
- tf_{*ij*}: frequency of word *j* in document *i*
- This can be the raw count (like in the BOW in the last slide):
- $tf_{ij} \in \{0,1\}$ if word *j* appears or doesn't appear in doc *i*
- $log(1 + tf_{ij})$ reduce the effect of outliers
- $tf_{ij} / max_j tf_{ij}$ normalize by document i's most frequent word
- What can we do with this?
- Use as features to learn a classifier $w \rightarrow y \dots$!

Defining features From Term Frequency

- Suppose we are classifying if a document was written by The Beatles or not (i.e., binary classification):
- Two classes $y \in Y = \{0, 1\} = \{$ not_beatles, beatles $\}$
- Let's use $tf_{ij} \in \{0,1\}$, which gives:

Linear classification

- We can then define weights θ for each feature
- θ = { <CMSC320, not_beatles> = +1, <CMSC320, beatles> = -1, <Walrus, not_beatles> = -0.3, <Walrus, beatles> = +1, <the, not_beatles> = +1, <the, not_beatles> = 0, <the, beatles> = 0,
- Write weights as vector that aligns with feature mapping
- Score ψ of an instance x and class y is the sum of the weights for the features in that class:

•
$$\boldsymbol{\psi}_{xy} = \Sigma \, \boldsymbol{\theta}_n f_n(\mathbf{x}, \mathbf{y})$$

• $= \theta^{\mathrm{T}} \mathrm{f}(\mathrm{x}, y)$

Linear classification

• We have a feature function f(x, y) and a score $\psi_{xy} = \theta^T f(x, y)$

Explicit Example

- We are interested in classifying documents into one of two classes *y* ∈ *Y* = { 0, 1 } = { hates_cats, likes_cats}
- Document 1: I like cats
- Document 2: I hate cats

$$x_1^{T} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

$$x_2^{T} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

• Now, represent documents with a feature function: $f(x, y = hates_cats = 0) = [x^T, 0^T, 1]^T$ $f(x, y = likes_cats = 1) = [0^T, x^T, 1]^T$

Explicit Example hate cats lik∉ f(x, y = 0) = $[\mathbf{x}^{\mathrm{T}}, 0^{\mathrm{T}},$ $x_1^T =$ 0 1 1 1 1]^T y₁ = ? [0^T, **x**^T, f(x, y = 1) = $x_2^T =$ 1 1 0 1 y₂ = ? 1]^T *y=0: hates_cats y*=1: *likes_cats* (1) hate hate cats like cats like $f(\mathbf{x}_{1}, y = hates_cats = 0) =$ 0 1 0 0 0 0 1 1 | 1 $f(\mathbf{x}_{1}, y = \text{likes}_\text{cats} = 1) = 0$ 0 0 0 1 1 0 1 1 $f(x_2, y = hates_cats = 0) = 1$ 0 1 1 0 0 0 0 1 $f(\mathbf{x}_{2}, y = likes_cats = 1) = 0$ 0 0 0 1 0 1 1 1

34

Explicit Example

- Now, assume we have weights θ for each feature
- $\theta = \{$ <I, hates_cats> = 0, <I, likes_cats> = 0,
- ke, hates_cats> = -1, <like, likes_cats> = +1,
- <hate, hates_cats> = +1, <hate, likes_cats> = -1,
- <cats, hates_cats> = -0.1, <cats, likes_cats = +0.5>
- Write weights as vector that aligns with feature mapping:

Explicit example

• Score ψ of an instance *x* and class *y* is the sum of the weights for the features in that class:

•
$$\boldsymbol{\psi}_{xy} = \Sigma \ \theta_n f_n(x, y)$$

• $= \theta^T f(x, y)$

• Let's compute $\psi_{x1,y=hates_cats}$...

•
$$\boldsymbol{\psi}_{x1,y=hates_cats} = \boldsymbol{\theta}^{T} f(x_1, y = hates_cats = 0)$$

• =
$$0*1 + -1*1 + 1*0 + -0.1*1 + 0*0 + 1*0 + -1*0 + 0.5*0 + 1*1$$

$$\boldsymbol{\theta}^{\mathrm{T}} = \begin{bmatrix} 0 & -1 & 1 & -0.1 & 0 & 1 & -1 & 0.5 & 1 \end{bmatrix} \bullet \begin{bmatrix} 0 & \text{hate} \\ 0 & \text{cats} \\ 1 & - \\ f(\mathbf{x_{1}}, y = 0) \end{bmatrix}$$

1 hates_ like 1 _cats 0 hate 1 cats 0 likes_ like 0 _cats (1)))

Explicit example

- Saving the boring stuff:
- $\psi_{x1,y=hates_cats} = -0.1; \psi_{x1,y=likes_cats} = +2.5$
- $\psi_{x2,y=hates_cats} = +1.9; \psi_{x2,y=likes_cats} = +0.5$
- We want to predict the class of each document:

Document 2: I hate cats

 \mathbf{C}

$\hat{y} = \arg \max \theta^{\mathsf{T}} \mathbf{f}(\mathbf{x}, y)$

- Document 1: $\operatorname{argmax}\{\psi_{x1,y=hates_cats'}, \psi_{x1,y=likes}, \}$???????
- Document 2: $\operatorname{argmax} \{ \psi_{x2,y=hates_cats'}, \psi_{x2,y=likes_cats} \}$???????

Inverse Document Frequency

- Recall:
- tf_{*ij*}: frequency of word *j* in document *i*
- Any issues with this ????????
- Term frequency gets overloaded by common words
- Inverse Document Frequency (IDF): weight individual words negatively by how frequently they appear in the corpus:

$$\mathrm{idf}_j = \log\left(\frac{\#\mathrm{documents}}{\sqrt{\frac{\mathrm{documents}}{\mathrm{with word }j}}\right)$$

Inverse Document Frequency

	the	CMSC320	you	he	Ι	quick	dog	me	CMSCs		than
Document 1	2	0	0	0	0	1	1	0	0		0
Document 2	0	0	2	2	1	0	0	1	0	•••	0
Document 3	2	1	0	1	0	0	0	0	1	-	1

$$idf_{the} = \log\left(\frac{3}{2}\right) = 0.405 \qquad idf_{you} = \log\left(\frac{3}{1}\right) = 1.098$$
$$idf_{CMSC320} = \log\left(\frac{3}{1}\right) = 1.098 \qquad idf_{he} = \log\left(\frac{3}{2}\right) = 0.405$$

TF-IDF

- How do we use the IDF weights?
- Term frequency inverse document frequency (TF-IDF):
- TF-IDF score: $tf_{ij} \times idf_j$

