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Announcements

• Peer Observation Tuesday 10/29

• Finish Lab 7

• Review Questions

• Today’s Lecture
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Today’s Lecture

• Missing Data …
– What is it?
– Simple methods for imputation.
– … with a tiny taste of Stats/ML lecturers to come.

Thanks to John Atwood and Wenjiang Fu



Missing Data

• Missing data is information that we want to know, but don’t!

• It can come in many forms, e.g.:
– People not answering questions on surveys
– Inaccurate recordings of the height of plants that need to 

be discarded
– Canceled runs in a driving experiment due to rain

• Could also consider missing columns (no collection at all) to 
be missing data …

[JA]



Key Question

• Why is the data missing?
– What mechanism is it that contributes to, or is 

associated with, the probability of a data point 
being absent?

– Can it be explained by our observed data or not?

• The answers drastically affect what we can ultimately 
do to compensate for the missing-ness

[JA]



• Delete all tuples with any missing values at all, so you are left only with observations with all 
variables observed

• Default behavior for libraries for analysis (e.g., regression).
– We’ll talk about this much more during the Stats/ML lectures

• This is the simplest way to handle missing data. In some cases, will work fine; in others, 
?????????????:
– Loss of sample will lead to variance larger than 

reflected by the size of your data.
– May bias your sample.

# Clean out rows with nil values
df = df.dropna()

[JA]

Complete Case Analysis



Example
• Dataset: Body fat percentage in men, and the circumference of various body parts [Penrose et al., 1985]

• Question: Does the circumference of certain body parts predict body fat percentage?

• Given complete data, how would you answer this ?????????
• One way to answer is regression analysis:
– One or more independent variables ("predictors”)
– One dependent variables (“outcome”)

• What is the relationship between the predictors and the outcome?
• What is the conditional expectation of the dependent variable given fixed values for the 

independent variables?

• Generalized body composition prediction equation for men using simple measurement techniques", K.W. Penrose, A.G. Nelson, A.G. 
Fisher, FACSM, Human Performance research Center, Brigham Young University, Provo, Utah 84602 as listed in Medicine and Science 
in Sports and Exercise, vol. 17, no. 2, April 1985, p. 189.

• http://staff.pubhealth.ku.dk/~tag/Teaching/share/data/Bodyfat.html

http://staff.pubhealth.ku.dk/~tag/Teaching/share/data/Bodyfat.html


A Side Note On Terms

• For linear regression we have equations of where we want 
to know the relationship between an outcome given some 
predictors.

• If you have a ML background:
– Get target, outcome given predictors, observations.

• If you have a Stats background:
– Get endogenous variables given exogenous variables.

• If you are more of a Math person:
– Get dependent variable (y-axis) given one or more 

independent variables (x-axis).
9



Y Xi i i= + +b b e0 1

Linear Regression

• Assumption: relationship between variables is linear:
– (We’ll relax linearity, study in more depth later.)

Dependent 
Variable
(e.g., ????????)

Independent Variable(s) 
(e.g., ?????????)

Population 
Y-Intercept

Population 
Slope

Random 
Error

[WF]
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Population & Sample Regression Models
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Population & Sample Regression Models
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Population & Sample Regression Models
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Estimating Parameters:
Least Squares Method

?
17



Scatter Plot

• Plot all (Xi, Yi) pairs, and plot your learned model
• If you squint, suggests how well the model fits the data
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[WF]



Question

• How would you draw a line through the points?
• How do you determine which line “fits the best” …?

?????????
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Least Squares

• Best Fit: difference between the true Y-values and the estimated Y-values is minimized:
– Positive errors offset negative errors …
– … square the error!

• Least squares minimizes the sum of the squared errors
– Why squared?  We’ll cover this in more depth in a few weeks.
– Until then: http://www.benkuhn.net/squared
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http://www.benkuhn.net/squared
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Least Squares, Graphically



Announcements

• Prof. Daniele is here!

• Questions 6 Fixed

• Milestone 1 Decompress (Updated 
Project 2) – Professionalism.

• Lab Friday – Be here with Laptop – new 
setup!

• More Missing Data!

25
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Interpretation of Coefficients

• Slope (b1):
– Estimated Y changes by b1 for each 

unit increase in X.
– If b1 = 2, then Y Is expected to increase 

by 2 for each 1 unit increase in X.

• Y-Intercept (b0):
– Average value of Y when X = 0.
– If b0 = 4, then average Y is expected to 

be 4 when X Is 0.

In-depth 
analysis to 

come!

^
^

^
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For an in depth derivation in matrix form: 
https://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/13/lecture-13.pdf

https://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/13/lecture-13.pdf


Now, Back to Missing Data …



Example

• Question: Does the circumference of certain body parts predict BF%?
• Assumption: BF% is a linear function of measurements of various body parts and other 

features …
• Analysis: Results from a regression model with BF% …

Predictor Estimate S.E. p-value
Age 0.0626 0.0313 0.0463

Neck -0.4728 0.2294 0.0403
Forearm 0.45315 0.1979 0.0229

Wrist -1.6181 0.5323 0.0026

(Interpretation ???????????)

[JA]

If you want to jump ahead on stats: 
http://rpubs.com/nicholas_dirienzo/linear_regression_fall2019

http://rpubs.com/nicholas_dirienzo/linear_regression_fall2019


Hypothesis Testing

• One of the core ideas of Data Science – Should be at the core of all the analysis that you do.

• Define a test statistic - a quantity (numerical summary of a data-set that reduces the data to 
one value) derived from the sample used to test a hypothesis.  

• The Null Hypothesis: H0 = The feature of interest has no effect on the target.
• The Alternative Hypothesis: H1 = The feature of interest does have an effect on the target.

• You’re testing if H0 is true or not. If it is, then you say there’s no relationship between our 
features. If it’s not, then you say ‘we reject H0 and accept H1’ – i.e., the features are related! 

• This gets into some tricky logic that statisticians argue over as you actually aren’t testing H1, 
but we’re going to avoid that discussion here. Book Link (On Webpage): Introduction to 
Statistical Learning http://faculty.marshall.usc.edu/gareth-james/ISL/ 29

http://faculty.marshall.usc.edu/gareth-james/ISL/


P-values

• A p-value is is the probability of obtaining 
a result equal to or "more extreme" than 
what was actually observed, when the null 
hypothesis is actually true. 

• Null Hypothesis: There is no significant 
difference between the specified 
populations.  The observed difference is 
due to sampling or experiment error.

• Typically, when we have a p-value below a 
certain threshold, say 0.05, then we can 
reject the null hypothesis and say that there 
is an effect.

30



• In this case, the dataset is complete:
– But what if 5 percent of the participants had missing values? 10 percent? 20 percent? 

• What if we performed complete case analysis and removed those who had missing values?

• Let’s examine the effect if we do this if when the data is missing completely at random (MCAR)
– Removed cases at random, reran analysis, stored the p-values
– p-value: probability of getting at least as extreme a result as what we observed given that 

there is no relationship
– Repeat 1000 times, plot p-values of the hypothesis test on slope=0 (why?).

[JA]

What If Data Were Missing?
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The Bootstrap

• What happens if we only have one sample?  Why might we 
need more?

• All that we have is the original sample.
– … which is large and random.
– Therefore, it probably resembles the population.

• So we sample at random from the original sample!

• We’ll dive more into this later but it’s a powerful tool – can 
be used to calculate values you might not otherwise be able 
to estimate.

33



Why The Bootstrap Works

• All of these look similar… most likely…

34

population sample resamples



Why We Need The Bootstrap

35

population sample resamples

What we wish 
we could get

What we 
really get



Key to Resampling

• From the original sample,
– draw at random
– with replacement
– as many values as the original 

sample contained

• The size of the new sample has to be 
the same as the original one, so that 
the two estimates are comparable.

36

Unknown 
Relationship

Population

Random 
Sample

Y Xi i i= + +b b e0 1

Y Xi i i= + +! ! !b b e0 1

J J

J

J
J

J
J

J
J

Bootstrap 
Sample

X A LOT



~5% Deleted (N=13)

Age
Neck Forearm Wrist
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~20% Deleted (N=50)

Age Neck Forearm Wrist
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Conclusions seem to change …

vs

Age (5%) Neck (5%) Age (20%) Neck (20%)

• Age/Neck: fail to reject the null hypothesis usually?

Still reject Forearm/Wrist most of the time

This is assuming the missing subjects’ distribution does not 
differ from the non-missing. This would cause bias …

[JA]



• Missing Completely at Random (MCAR)

• Missing at Random (MAR)

• Missing Not at Random (MNAR)

[JA]

Types Of Missing-ness



• Suppose you’re loitering outside of STH one day …

Students just received their mid-semester grades

You start asking passing students their CMPS3660 grades

• You don’t force them to tell you or anything

• You also write down their gender and hair color

[JA]

What Distinguishes Each Type of Missing-ness?



Your Sample

Hair Color Gender Grade

Red M A
Brown F A
Black F B
Black M A

Brown M
Brown M
Brown F
Black M B
Black M B

Brown F A
Black F

Brown F C
Red M
Red F A

Brown M A
Black M A

Summary:
• 7 students received As
• 3 students received Bs
• 1 student received a C

Nobody is failing!
• But 5 students did not 

reveal their grade …

[JA]



• Same dataset, but the values are replaced with a “0” 
if the data point is observed and “1” if it is not

• Question: for any one of these data points, what is 
the probability that the point is equal to “1” …?
– P(R) i.e., the probability that we didn’t see it.

• What type of missing-ness do the grades exhibit?

Hair Color Gender Grade

0 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 0 1
0 0 1
0 0 0
0 0 0
0 0 0
0 0 1
0 0 0
0 0 1
0 0 0
0 0 0
0 0 0

[JA]

What Influences a Data Point’s Presence?



Experiment and Sample Space

• Experiment: a procedure that yields one of a given set of possible outcomes
– Ex: flip a coin,  roll two dice, draw five cards from a deck, etc.

• Sample space Ω: the set of possible outcomes
– We focus on countable sample space: Ω is finite or countably infinite
– In many applications, Ω is uncountable (e.g., a subset of ℝ)

• Event: a subset of the sample space  
– Probability is assigned to events
– For an event 𝐴 ⊆ Ω, its probability is denoted by P(𝐴)

– Describes beliefs about likelihood of outcomes



Examples

• Ex. 2: consider rolling a 6-sided biased (loaded) die

– Sample space Ω = {1, 2, 3, 4, 5, 6}

– Assume  P 3 = 0
1
, P 1 = P 2 = P 4 = P 5 = P 6 = 2

1

– What	is	the	probability	of	getting	an	odd	number?	

Let	𝐵 denote	the	event	of	getting	an	odd	number

P 𝐵 =
1
7 +

2
7 +

1
7 =

4
7

𝐵 = 1, 3, 5



Independence

• Two events 𝐴 and 𝐵 are independent if and only if P 𝐴 ∩ 𝐵 = P 𝐴 P(𝐵)

• Ex. 4:   Consider an experiment involving two successive rolls of a 4-sided 
die in which all 16 possible outcomes are equally likely and have 
probability 1/16. Are the following pair of events independent? 

(a)   𝐴 = 1st roll is 1 , 𝐵 = sum of two rolls is 5
(b)   𝐴 = 1st roll is 4 , 𝐵 = sum of two rolls is 4

Yes

No



Conditional Probability
Definition: Let E and F be events with P(F) > 0. The conditional probability of E given F, denoted 

by P(E|F), is defined as:

Example: A bit string of length four is generated at random so that each of the 16	bit strings of 
length 4 is equally likely. What is the probability that it contains at least two consecutive 0s, 
given that its first bit is a 0?

Solution: Let E be the event that the bit string contains at least two consecutive 0s, and 
Let F be the event that the first bit is a 0. 

– Since E ⋂ F = {0000, 0001, 0010, 0011, 0100}, P(E⋂F) = 5/16.
– Because 8 bit strings of length 4 start with a 0, P(F) = 8/16	= ½.

Hence,

P 𝐸|𝐹 =
𝑃(𝐸⋂ 𝐹)
𝑃(𝐹)

P 𝐸|𝐹 =
𝑃(𝐸⋂ 𝐹)
𝑃(𝐹)

=
5/16
1/2 = 5

8



• If this probability is not dependent on any of the data, observed or 
unobserved, then the data is Missing Completely at Random 
(MCAR).

• Suppose that X is the observed data (hair and gender) and Y is the 
unobserved data (grade).

• Call our “missing matrix” R.
• Then, if the data are MCAR, P(R|X,Y) = ??????????

P(R|X,Y) = P(R)
• Probability of those rows missing is independent of the observed 

and unobserved data.
• I.e., the probability of that any given datapoint is missing is equal 

over the whole dataset. Each datum that is present had the same 
probability of being missing as each datum that is absent. Implies 
that ignoring the missing data will not bias inference. [JA]

MCAR: Missing Completely at Random
Hair Color Gender Grade

0 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 0 1
0 0 1
0 0 0
0 0 0
0 0 0
0 0 1
0 0 0
0 0 1
0 0 0
0 0 0
0 0 0



Totally Realistic MCAR Example
• You are running an experiment on 

plants grown in pots, when suddenly 
you have a nervous breakdown 
working on Project 1 and smash 
some of the pots

• You will probably not choose the 
plants to smash in a well-defined 
pattern, such as height age, etc.

• Hence, the missing values generated 
from your act of madness will likely 
fall into the MCAR category

[JA]



• A completely random mechanism for 
generating missing-ness in your data set 
just isn’t very realistic

• Usually, missing data is missing for a 
reason:
– Maybe older people are less likely to 

answer web-delivered questions on 
surveys.

– In longitudinal studies people may die 
before they have completed the entire 
study.

– Companies may be reluctant to reveal 
financial information.

Applicability of MCAR



• Missing at Random (MAR): probability of 
missing data is dependent on the observed data 
but not the unobserved data.

• Suppose that X is the observed data and Y is the 
unobserved data. Call our “missing matrix” R.

• Then, if the data are MAR, P(R|X,Y) = ??????????

P(R|X,Y) = P(R|X)

• Not exactly random (in the vernacular sense).
– There is a probabilistic mechanism that is 

associated with whether the data is missing.
– Mechanism takes the observed data as input.

MAR: Missing at Random
Hair Color Gender Grade

0 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 0 1
0 0 1
0 0 0
0 0 0
0 0 0
0 0 1
0 0 0
0 0 1
0 0 0
0 0 0
0 0 0



Examples?

• MAR allows for data to be missing according to a random process, but is more general than 
MCAR -- all units do not have equal probabilities of being missing. 

• Missingness may only depend on information that is fully observed! 
• For example, the reporting of income on surveys may vary according to some measured factor, 

such as age, race or sex. We can thus account for heterogeneity in the probability of reporting 
income by controlling for the measured covariate in whatever model is used for infrence.

?



MAR: Key Point

• We can model that latent mechanism and 
compensate for it!

• Imputation: replacing missing data with 
substituted values.
– Models today will assume MAR.
– Example: if age is known, you can model 

missing-ness as a function of age.

• Whether or not missing data is MAR or the 
next type, Missing Not at Random (MNAR), 
is not* testable.
– Requires you to “understand” your data!

*unless you can get the missing data (e.g., post-study phone calls). 

Hair Color Gender Grade

0 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 0 1
0 0 1
0 0 0
0 0 0
0 0 0
0 0 1
0 0 0
0 0 1
0 0 0
0 0 0
0 0 0



• MNAR: missing-ness has something to do with the 
missing data itself!

• Examples: ??????????
– Do you binge drink?  Do you have a trust fund?  

Do you use illegal drugs?  What is your 
sexuality?  Are you depressed?

• Said to be “non-ignorable”:
– Missing data mechanism must be considered as 

you deal with the missing data.
– Must include model for why the data are 

missing, and best guesses as to what the data 
might be.

MNAR: Missing Not at Random



Back to STH …
• Is the the missing data:
• MCAR;
• MAR; or
• MNAR?
• ???????????

Hair Color Gender Grade

Red M A
Brown F A
Black F B
Black M A

Brown M
Brown M
Brown F
Black M B
Black M B

Brown F A
Black F

Brown F C
Red M
Red F A

Brown M A
Black M A



Add a Variable

• Bring in the GPA:
• Does this change anything?

Hair Color GPA Gender Grade

Red 3.4 M A
Brown 3.6 F A
Black 3.7 F B
Black 3.9 M A

Brown 2.5 M
Brown 3.2 M
Brown 3.0 F
Black 2.9 M B
Black 3.3 M B

Brown 4.0 F A
Black 3.65 F

Brown 3.4 F C
Red 2.2 M
Red 3.8 F A

Brown 3.8 M A
Black 3.67 M A



To Recap

• Assume that we have a matrix where X is the 
observed data, Y is the unobserved data, and R is Call 
our “missing matrix” R.

• Missing Completely at Random (MCAR).
– Missingness does not depend on observed or 

unobserved data.
– P(R|X,Y) = P(R)

• Missing at Random (MAR).
– Missingness depends only on observed data. 
– P(R|X,Y) = P(R|X)

• Missing Not At Random (MNAR).
– Neither MCAR or MAR.

57

Hair Color GPA Gender Grade

Red 3.4 M A
Brown 3.6 F A
Black 3.7 F B
Black 3.9 M A

Brown 2.5 M
Brown 3.2 M
Brown 3.0 F
Black 2.9 M B
Black 3.3 M B

Brown 4.0 F A
Black 3.65 F

Brown 3.4 F C
Red 2.2 M
Red 3.8 F A

Brown 3.8 M A
Black 3.67 M A
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Handling Missing Data …



• Mean Imputation: imputing the average from observed cases for all missing values of a 
variable.

• Hot-deck Imputation: imputing a value from another subject, or “donor,” that is most like the 
subject in terms of observed variables.
– Last observation carried forward (LOCF): order the dataset somehow and then fill in a 

missing value with its neighbor.
– E.g., In evaluations of interventions where pre-treatment measures of the outcome variable 

are also recorded, a strategy that is sometimes used is to replace missing outcome values 
with the pre-treatment measure.

• Cold-deck Imputation: bring in other datasets.
• Old and Busted:
– All fundamentally impose too much precision.
– Have uncertainty over what unobserved values actually are.
– Developed before cheap computation.

Single Imputation



• Developed to deal with noise 
during imputation!
– Impute once à treats imputed 

value as observed.

• We have uncertainty over what the 
observed value would have been

• Multiple Imputation: generate 
several random values for each 
missing data point during 
imputation and pool the results!

Multiple Imputation



Incomplete 
data Pooled results

s1

s2

sN

a1

a2

aN

Impute N times Analysis performed 
on each imputed 

set

Multiple Imputation

• Developed to deal with noise 
during imputation!
– Impute once à treats 

imputed value as 
observed.

• We have uncertainty over 
what the observed value 
would have been

• Multiple Imputation:
generate several random 
values for each missing data 
point during imputation and 
pool the results!



Tiny Example

X Y
32 2
43 ?
56 6
25 ?
84 5

Independent variable: X
Dependent variable: Y
We assume Y has a linear relationship with X



Let’s Impute Some Data!

• Use a predictive distribution of the missing values (how??):
– Given the observed values, make random draws of the observed values and fill them in.
– Do this N times and make N imputed datasets.

X Y
32 2
43 5.5
56 6
25 8
84 5

X Y
32 2
43 7.2
56 6
25 1.1
84 5

For very large values of N=2 …



Inference with Multiple Imputation

• Now that we have our imputed data sets, how do we make use of them?       ???????????
– Analyze each of the separately. 

X Y
32 2
43 5.5
56 6
25 8
84 5

X Y
32 2
43 7.2
56 6
25 1.1
84 5

Slope 4.932
Standard error 4.287

Slope -0.8245
Standard error 6.1845

Y X
i i i
= + +b b e

0 1
Y X

i i i
= + +b b e

0 1



Pooling analyses

• Pooled Slope Estimate is the average of the N imputed estimates.

• Our example, β1p = Z22[Z20
0

= (4.932-.8245) x 0.5 = 2.0538

• The pooled slope variance is given by: 

– 𝑠 = ∑^_
`
+ (1 + 2

`
) x 2

ab2
∗ ∑(𝛽1𝑖 − β1p )2

• Where Zi is the standard error of the imputed slopes.

• Our example: (4.287 + 6.1845)/2 + (3/2)*(16.569) = 30.08925

• Standard Error: take the square root, and we get 5.485.



• Comprehensive treatment: http://www.bias-project.org.uk/Missing2012/Lectures.pdf and 
http://www.stat.columbia.edu/~gelman/arm/missing.pdf and 
https://www4.stat.ncsu.edu/~post/suchit/bayesian-methods-incomplete.pdf

• Given events A, B; and P(A) > 0 …
• Bayes’ Theorem:

𝑃 𝐵 𝐴 =
𝑃(𝐴|𝐵) ∗ 𝑃(𝐵)

𝑃(𝐴)
• In our case:

𝑃 𝐇 𝐄 =
𝑃(𝐄|𝐇) ∗ 𝑃(𝐇)

𝑃(𝐄)
Posterior probability of the 
hypothesis given the evidence

Prior 
probability of 
hypotheses

Prior over the 
evidence

Probability of seeing 
evidence given the 
hypothesis

Predicting Missing Data Given the Observed Data

http://www.bias-project.org.uk/Missing2012/Lectures.pdf
http://www.stat.columbia.edu/~gelman/arm/missing.pdf
https://www4.stat.ncsu.edu/~post/suchit/bayesian-methods-incomplete.pdf


• Establish a prior distribution:
– Some distribution of parameters of interest θ	before considering the data, P(θ).
– We want to estimate θ.

• Given θ, can establish a distribution P(Xobs|θ)

• Use Bayes Theorem to establish P(θ|Xobs)	…
– Make random draws for θ.
– Use these draws to make predictions of Ymiss.

Bayesian Imputation

𝑃 θ Xobs =
𝑃(Xobs|θ) ∗ 𝑃(θ)

𝑃(Xobs)



• Number of imputations N depends on:
– Size of dataset
– Amount of missing data in the dataset

• Some previous research indicated that a small N is sufficient for efficiency of 
the estimates, based on:

– (1 + m
`

) - 1
– N is the number of imputations and λ is the fraction of missing 

information for the term being estimated [Schaffer 1999]
• More recent research claims that a good N is actually higher in order to 

achieve higher power [Graham et al. 2007]

How Big Should N Be?



• Interested?  Further reading:
• Regression-based MI methods
• Multiple Imputation Chained Equations (MICE) or Fully Conditional Specification (FCS)
– Readable summary from JHU School of Public Health: 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074241/
• Markov Chain Monte Carlo (MCMC)
– A bit more complicated - http://stronginference.com/missing-data-imputation.html

• Comprehensive Tutorials (Grad level Stats):
– http://www.bias-project.org.uk/Missing2012/Lectures.pdf
– http://www.stat.columbia.edu/~gelman/arm/missing.pdf
– https://www4.stat.ncsu.edu/~post/suchit/bayesian-methods-incomplete.pdf

More Advanced Methods

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074241/
http://stronginference.com/missing-data-imputation.html
http://www.bias-project.org.uk/Missing2012/Lectures.pdf
http://www.stat.columbia.edu/~gelman/arm/missing.pdf
https://www4.stat.ncsu.edu/~post/suchit/bayesian-methods-incomplete.pdf

