
Data Wrangling: Munging,
Tidy Data, and Working with
Multiple Data Tables (III)
Nicholas Mattei, Tulane University
CMPS3660 – Introduction to Data Science – Fall 2019
https://rebrand.ly/TUDataScience

Many Thanks
Slides based off Introduction to Data Science from John P. Dickerson -
https://cmsc320.github.io/

https://rebrand.ly/TUDataScience
https://cmsc320.github.io/

Announcements

• Labs Posted

• Lxml fix

• Groups access

• Merge/Join Terms

• Early Office Hours

2

The Data LifeCycle

Data
Collection

Data
Processing

Exploratory
Analysis

&
Data

Visualization

Analysis,
Hypothesis

Testing,
& ML

Insight
&

Policy
Decision

Today

3

SQL And Relational Data

• Relational data:
– What is a relation, and how do they interact?

• Querying databases:
– SQL
– SQLite
– How does this relate to pandas?

• Joins in SQL

Thanks to Zico Kolter for some structure for this lecture!

Relation
• Simplest relation: a table aka tabular data full of unique tuples

5

ID age wgt_kg hgt_cm

1 12.2 42.3 145.1

2 11.0 40.8 143.8

3 15.6 65.3 165.3

4 35.1 84.2 185.8

Labels

Observations
(called tuples)

Variables
(called attributes)

Primary keys

• The primary key is a unique identifier for every tuple in a relation.
– Each tuple has exactly one primary key

ID age wgt_kg hgt_cm nat_id

1 12.2 42.3 145.1 1

2 11.0 40.8 143.8 1

3 15.6 65.3 165.3 2

4 35.1 84.2 185.8 1

5 18.1 62.2 176.2 3

6 19.6 82.1 180.1 1

ID Nationality
1 USA
2 Canada
3 Mexico

• Yes, in Pandas; but not in the database world

• For most databases, an “index” is a data structure
used to speed up retrieval of specific tuples

• For example, to find all tuples with nat_id = 2:
– We can either scan the table – O(N)
– Or use an “index” (e.g., binary tree) – O(log N)

Wait, Aren’t These Called “indexes”?

Foreign keys

• Foreign keys are attributes (columns) that point to a different
table’s primary key.
– A table can have multiple foreign keys

ID age wgt_kg hgt_cm nat_id

1 12.2 42.3 145.1 1

2 11.0 40.8 143.8 1

3 15.6 65.3 165.3 2

4 35.1 84.2 185.8 1

5 18.1 62.2 176.2 3

6 19.6 82.1 180.1 1

ID Nationality
1 USA
2 Canada
3 Mexico

Relation Schema
• A list of all the attribute names, and their domains

create table instructor (
ID char(5),
name varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2),
primary key (ID),
foreign key (dept_name) references department

)

create table department
(dept_name varchar(20),
building varchar(15),
budget numeric(12,2) check (budget > 0),
primary key (dept_name)
);

SQL Statements
To create Tables

Schema Diagrams

Searching for elements

• Find all people with nationality Canada (nat_id = 2):
• ???????????????

ID age wgt_kg hgt_cm nat_id

1 12.2 42.3 145.1 1

2 11.0 40.8 143.8 1

3 15.6 65.3 165.3 2

4 35.1 84.2 185.8 1

5 18.1 62.2 176.2 3

6 19.6 82.1 180.1 1

O(n)

Indexes

• Like a hidden sorted map of references to a specific attribute (column) in a table.
– Allows O(log n) lookup instead of O(n)

loc ID age wgt_kg hgt_cm nat_id

0 1 12.2 42.3 145.1 1

128 2 11.0 40.8 143.8 2

256 3 15.6 65.3 165.3 2

384 4 35.1 84.2 185.8 1

512 5 18.1 62.2 176.2 3

640 6 19.6 82.1 180.1 1

nat_id locs
1 0, 384, 640

2 128, 256
3 512

INdexes

• Actually implemented with data structures like B-trees
– In a full Databases course you would learn how to store and make these!

• But: indexes are not free
– Takes memory to store
– Takes time to build
– Takes time to update (add/delete a row, update the column)

• But, but: one index is (mostly) free
– Index will be built automatically on the primary key

• Think before you build/maintain an index on other attributes!

Relationships

• Primary keys and foreign keys define interactions
between different tables aka entities. Four types:
– One-to-one
– One-to-one-or-none
– One-to-many and many-to-one
– Many-to-many

• Connects (one, many) of the rows in one table to
(one, many) of the rows in another table

One-to-many & Many-to-one

• One person can have one nationality (in this example),
but one nationality can include many people.

15

ID age wgt_kg hgt_cm nat_id

1 12.2 42.3 145.1 1

2 11.0 40.8 143.8 1

3 15.6 65.3 165.3 2

4 35.1 84.2 185.8 1

5 18.1 62.2 176.2 3

6 19.6 82.1 180.1 1

ID Nationality
1 USA
2 Canada
3 Mexico

Person Nationality

One-to-One
• Two tables have a one-to-one relationship if every tuple in the first tables

corresponds to exactly one entry in the other

• In general, you won’t be using these (why not just merge the rows into
one table?) unless:
– Split a big row between SSD and HDD or distributed
– Restrict access to part of a row (some DBMSs allow column-level

access control, but not all)
• Caching, partitioning, & other serious stuff that we won’t cover.

Person SSN

One-to-One-Or-None

• Say we want to keep track of people’s cats:

• People with IDs 2 and 3 do not own cats*, and are not in the table.
Each person has at most one entry in the table.

• Is this data tidy?

Person ID Cat1 Cat2
1 Chairman Meow Fuzz Aldrin
4 Anderson Pooper Meowly Cyrus
5 Gigabyte Megabyte

Person Cat

*nor do they have hearts, apparently.

Many-to-Many
• Say we want to keep track of people’s cats’ colorings:

• One column per color, too many columns, too many nulls
• Each cat can have many colors, and each color many cats

ID Name
1 Megabyte
2 Meowly Cyrus
3 Fuzz Aldrin
4 Chairman Meow
5 Anderson Pooper
6 Gigabyte

Cat ID Color ID Amount
1 1 50
1 2 50
2 2 20
2 4 40
2 5 40
3 1 100

Cat Color

Associative tables

• Typically used to model pure relationships, not entities.
• The Primary Keys are from other tables – here we have [CatID, ColorID]
• Pros:
– Handles one-to-one, one-to-many, and many-to-one
– Can be added without modifying existing tables.

• Cons:
– Requries extra joins/queries to learn certain things.

Cat ID Color ID Amount
1 1 50
1 2 50
2 2 20
2 4 40
2 5 40
3 1 100

ID Name

1 Megabyte

2 Meowly Cyrus

3 Fuzz Aldrin

4 Chairman Meow

5 Anderson Pooper

6 Gigabyte

ID Name

1 Black

2 Brown

3 White

4 Orange

5 Neon Green

6 Invisible

Cats Colors

Aside: Pandas
• So, this kinda feels like pandas …
– And pandas kinda feels like a relational data system …

• Pandas is not strictly a relational data system:
– No notion of primary / foreign keys

• It does have indexes (and multi-column indexes):
– pandas.Index: ordered, sliceable set storing axis labels
– pandas.MultiIndex: hierarchical index

• Rule of thumb: do heavy, rough lifting at the relational DB level, then fine-
grained slicing and dicing and visualization with pandas

SQLite

• On-disk relational database management system (RDMS)
– Applications connect directly to a file.

• Most RDMSs have applications connect to a server:
– Advantages include greater concurrency, less restrictive locking
– Disadvantages include, for this class, setup time J

• Installation:
– conda install -c anaconda sqlite
– (Should come preinstalled, I think?)

• All interactions use Structured Query Language (SQL)

SQLite CLI & GUI
Frontend

SQLite FilePython

Raw Input

Structured output
(trained classifiers,

JSON for D3,
visualizations)

SQL

SQ
L

Persists!

Persists!

Using a DB with Pandas!

Crash Course in SQL (in python)

• Cursor: temporary work area in system memory for
manipulating SQL statements and return values

• If you do not close the connection (conn.close()), any
outstanding transaction is rolled back

• (More on this in a bit.)

import sqlite3

Create a database and connect to it
conn = sqlite3.connect(“cmsc320.db”)
cursor = conn.cursor()

do cool stuff
conn.close()

Crash Course in SQL (in python)

• Capitalization doesn’t matter for SQL reserved words
• SELECT = select = SeLeCt
• Rule of thumb: capitalize keywords for readability

Make a table
cursor.execute(“””
CREATE TABLE cats (

id INTEGER PRIMARY KEY,
name TEXT

)”””)

?????????

id name
cats

Crash Course in SQL (in python)
Insert into the table
cursor.execute(“INSERT INTO cats VALUES (1, ’Megabyte’)”)
cursor.execute(“INSERT INTO cats VALUES (2, ‘Meowly Cyrus’)”)
cursor.execute(“INSERT INTO cats VALUES (3, ‘Fuzz Aldrin’)”)
conn.commit()

id name
1 Megabyte
2 Meowly Cyrus
3 Fuzz Aldrin

Delete row(s) from the table
cursor.execute(“DELETE FROM cats WHERE id == 2”);
conn.commit()

id name
1 Megabyte
3 Fuzz Aldrin

Crash Course in SQL (in python)

• index_col=“id”: treat column with label “id” as an index
• index_col=1: treat column #1 (i.e., “name”) as an index
• (Can also do multi-indexing.)

Read all rows from a table
for row in cursor.execute(”SELECT * FROM cats”):

print(row)

Read all rows into pandas DataFrame
pd.read_sql_query(“SELECT * FROM cats”, conn, index_col=”id”)

id name
1 Megabyte
3 Fuzz Aldrin

Joining data

• A join operation merges two or more tables into a single relation. Different ways of doing this:
• Inner
• Left
• Right
• Full Outer

• Join operations are done on columns that explicitly link the tables together

27

Inner Joins

• Inner join returns merged rows that share the same value in the
column they are being joined on (id and cat_id).

28

id name
1 Megabyte
2 Meowly Cyrus
3 Fuzz Aldrin
4 Chairman Meow
5 Anderson Pooper
6 Gigabyte

cat_id last_visit
1 02-16-2017
2 02-14-2017
5 02-03-2017

cats

visits

id name last_visit
1 Megabyte 02-16-2017
2 Meowly Cyrus 02-14-2017
5 Anderson Pooper 02-03-2017

Inner Joins

29

Inner join in pandas
df_cats = pd.read_sql_query(“SELECT * from cats”, conn)
df_visits = pd.read_sql_query(“SELECT * from visits”, conn)
df_cats.merge(df_visits, how = “inner”,

left_on = “id”, right_on = ”cat_id”)

Inner join in SQL / SQLite via Python
cursor.execute(“””

SELECT
*

FROM
cats, visits

WHERE
cats.id == visits.cat_id

”””)

Left Joins

• Inner joins are the most common type of joins (get results that appear in both tables)
• Left joins: all the results from the left table, only some matching results from the right table
• Left join (cats, visits) on (id, cat_id) ???????????

30

id name last_visit
1 Megabyte 02-16-2017
2 Meowly Cyrus 02-14-2017
3 Fuzz Aldrin NULL
4 Chairman Meow NULL
5 Anderson Pooper 02-03-2017
6 Gigabyte NULL

Right Joins

• Take a guess!
• Right join

(cats, visits)
on

(id, cat_id)
???????????

31

id name
1 Megabyte
2 Meowly Cyrus
3 Fuzz Aldrin
4 Chairman Meow
5 Anderson Pooper
6 Gigabyte

cat_id last_visit
1 02-16-2017
2 02-14-2017
5 02-03-2017
7 02-19-2017
12 02-21-2017

cats

visits

id name last_visit
1 Megabyte 02-16-2017
2 Meowly Cyrus 02-14-2017
5 Anderson Pooper 02-03-2017
7 NULL 02-19-2017
12 NULL 02-21-2017

Left/Right Joins

32

Left join in pandas
df_cats.merge(df_visits, how = “left”,

left_on = “id”, right_on = ”cat_id”)

Right join in pandas
df_cats.merge(df_visits, how = “right”,

left_on = “id”, right_on = ”cat_id”)

Left join in SQL / SQLite via Python
cursor.execute(“SELECT * FROM cats LEFT JOIN visits ON

cats.id == visits.cat_id”)

Right join in SQL / SQLite via Python
L

Full Outer Join
• Combines the left and the right join ???????????

33

id name last_visit
1 Megabyte 02-16-2017
2 Meowly Cyrus 02-14-2017
3 Fuzz Aldrin NULL
4 Chairman Meow NULL
5 Anderson Pooper 02-03-2017
6 Gigabyte NULL
7 NULL 02-19-2017
12 NULL 02-21-2017

Outer join in pandas
df_cats.merge(df_visits, how = “outer”,

left_on = “id”, right_on = ”cat_id”)

Google Image Search One Slide SQL Join
Visual

34Image credit: http://www.dofactory.com/sql/join

ID age wgt_kg hgt_cm nat_id

1 12.2 42.3 145.1 1

2 11.0 40.8 143.8 1

3 15.6 65.3 165.3 2

4 35.1 84.2 185.8 1

5 18.1 62.2 176.2 3

6 19.6 82.1 180.1 1

SELECT nat_id, AVG(age) as average_age
FROM persons GROUP BY nat_id

nat_id average_age

1 19.48

2 15.6

3 18.1

Group by Aggregates

Raw SQL in Pandas

• If you “think in SQL” already, you’ll be fine with pandas:
– conda install -c anaconda pandasql

• Info: http://pandas.pydata.org/pandas-docs/stable/comparison_with_sql.html

36

Write the query text
q = ”””

SELECT
*

FROM
cats

LIMIT 10;”””

Store in a DataFrame
df = sqldf(q, locals())

