
Data Wrangling(II): Munging,
Tidy Data, and Working with
Multiple Data Tables
Nicholas Mattei, Tulane University
CMPS3660 – Introduction to Data Science – Fall 2019
https://rebrand.ly/TUDataScience

Many Thanks
Slides based off Introduction to Data Science from John P. Dickerson -
https://cmsc320.github.io/

https://rebrand.ly/TUDataScience
https://cmsc320.github.io/

Announcements

• Project1 and Milestone1 Updates
– Reading really important here!

2

Next Couple of Lectures (Till Midterm)

• Tables in the Abstract
– How, Why
– Operations

• Principles of Tidy Data

• Tables in Pandas
• Tables in SQL and RMDBS

• 2 More Labs.

3

The Data LifeCycle

Data
Collection

Data
Processing

Exploratory
Analysis

&
Data

Visualization

Analysis,
Hypothesis

Testing,
& ML

Insight
&

Policy
Decision

Today

4

Image credit: http://www.dofactory.com/sql/join

Types of Joins
In Pandas this is called a
FULL OUTTER JOIN!⨝ ⟗

⟕ ⟖

Quick Review

• Tables: A simple, common abstraction
– Subsumes a set of “strings” – a common input, or a list of lists, or a list of dicts with the

same keys.

• Operations on tables:
– Select, Map, Aggregate, Reduce, Join/Merge, Union/Concat, Group By

• These may have different names! In Pandas it’s a merge while in SQL it’s a join.
– Actually, this isn’t quite right -- Pandas has a join command that will only join based on

the index! It also has a merge command that allows for more options – see Lab 7!
– Pandas also uses merge as we’ll see in lab while SQL uses Union

• There can be subtle variations in implementation on different data systems. Remember I’m
giving you the high level but you need to read the docs for your software when you use this stuff!6

How many tuples in the answer?

ID A B C
1 foo 3 6.6
2 baz 2 4.7
3 foo 4 3.1
4 baz 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

Group By ‘A’

ID B C
1 3 6.6
3 4 3.1
7 4 2.3
8 3 8.0

ID B C
5 1 1.2
6 2 2.5

A = foo

A = bar

ID B C
2 2 4.7
4 3 8.0

A = baz

Note: A GroupBy should
partition the whole table!

When does it not?

How many groups in the answer?

ID A B C
1 foo 3 6.6
2 baz 2 4.7
3 foo 4 3.1
4 baz 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

Group By ‘A’, ‘B’

ID C
1 6.6
8 8.0

A = foo, B=3
ID C
3 3.1
7 2.3

A = foo, B=4

ID C
2 4.7

ID C
4 8.0

A = baz, B=2 A = baz, B=3

ID C
5 1.2

ID C
6 2.5

A = bar, B=1 A = bar, B=2

How many tuples in the answer?

ID A B
1 foo 3
2 bar 2
4 foo 4
5 foo 3

ID C
2 1.2
4 2.5
6 2.3
7 8.0

⨝
ID A B C
2 bar 2 1.2
4 foo 4 2.5

How many tuples in the answer?

ID A B
1 foo 3
2 bar 2
4 foo 4
5 foo 3

ID C
2 1.2
4 2.5
6 2.3
7 8.0

⟗
ID A B C
1 foo 3 NaN
2 bar 2 1.2
4 foo 4 2.5
5 foo 3 NaN
6 NaN NaN 2.3
7 NaN NaN 8.0

Pandas: History

• Written by: Wes McKinney
– Started in 2008 to get a high-performance, flexible tool

to perform quantitative analysis on financial data

• Highly optimized for performance, with critical code paths
written in Cython or C

• Key constructs:
– Series (like a NumPy Array)
– DataFrame (like a Table or Relation, or R data.frame)

• Foundation for Data Wrangling and Analysis in Python

Series

• Subclass of numpy.ndarray

• Data: any type

• Index labels need not be ordered

• Duplicates are possible (but
result in reduced functionality)

5

6

12

-5

6.7

A

B

C

D

E

valuesindex

Pandas: Series

• Subclass of numpy.ndarray

• Data: any type

• Index labels need not be ordered

• Duplicates possible but result in reduced
functionality

DataFrame

• NumPy array-like

• Each column can have a
different type

• Row and column index

• Size mutable: insert and delete
columns

0

4

8

-12

16

A

B

C

D

E

index

x

y

z

w

a

2.7

6

10

NA

18

True

True

False

False

False

foo bar baz quxcolumns

Pandas: DataFrame

• Each column can have a different type
– Row and Column index
– Mutable size: insert and delete columns

• Note the use of word “index” for what we called
“key”
– Relational databases use “index” to mean

something else

• Non-unique index values allowed
– May raise an exception for some operations

DataFrame

• Axis indexing enable rich data alignment,
joins / merges, reshaping, selection, etc.

day Fri Sat Sun Thur
sex smoker
Female No 3.125 2.725 3.329 2.460
 Yes 2.683 2.869 3.500 2.990
Male No 2.500 3.257 3.115 2.942
 Yes 2.741 2.879 3.521 3.058

Hierarchical Indexes

• Sometimes more intuitive organization of the data
• Makes it easier to understand and analyze higher-dimensional data
– e.g., instead of 3-D array, may only need a 2-D array
– What is a cube in n-dimensions?

• Reindexing to change the index associated with a DataFrame
– Common usage to interpolate, fill in missing values

b 7.2
c 3.6
d 4.5
e NaN

In [83]: obj.reindex(['a', 'b', 'c', 'd', 'e'], fill_value=0)
Out[83]:
a -5.3
b 7.2
c 3.6
d 4.5
e 0.0

For ordered data like time series, it may be desirable to do some interpolation or filling
of values when reindexing. The method option allows us to do this, using a method such
as ffill which forward fills the values:

In [84]: obj3 = Series(['blue', 'purple', 'yellow'], index=[0, 2, 4])

In [85]: obj3.reindex(range(6), method='ffill')
Out[85]:
0 blue
1 blue
2 purple
3 purple
4 yellow
5 yellow

Table 5-4 lists available method options. At this time, interpolation more sophisticated
than forward- and backfilling would need to be applied after the fact.

Table 5-4. reindex method (interpolation) options

Argument Description

ffill or pad Fill (or carry) values forward

bfill or backfill Fill (or carry) values backward

With DataFrame, reindex can alter either the (row) index, columns, or both. When
passed just a sequence, the rows are reindexed in the result:

In [86]: frame = DataFrame(np.arange(9).reshape((3, 3)), index=['a', 'c', 'd'],
 : columns=['Ohio', 'Texas', 'California'])

In [87]: frame
Out[87]:
 Ohio Texas California
a 0 1 2
c 3 4 5
d 6 7 8

In [88]: frame2 = frame.reindex(['a', 'b', 'c', 'd'])

In [89]: frame2
Out[89]:

Essential Functionality | 123

From: Python for Data Analysis; Wes McKinney

Essential Functionality

• “drop” to delete entire rows or columns
• Indexing, Selection, Filtering: very similar to NumPy
• Arithmetic Operations
– Result index union of the two input indexes.
– Options to do “fill” while doing these operations.

 one two three
Colorado 0 5 6
Utah 8 9 10
New York 12 13 14

So there are many ways to select and rearrange the data contained in a pandas object.
For DataFrame, there is a short summary of many of them in Table 5-6. You have a
number of additional options when working with hierarchical indexes as you’ll later
see.

When designing pandas, I felt that having to type frame[:, col] to select
a column was too verbose (and error-prone), since column selection is
one of the most common operations. Thus I made the design trade-off
to push all of the rich label-indexing into ix.

Table 5-6. Indexing options with DataFrame

Type Notes

obj[val] Select single column or sequence of columns from the DataFrame. Special case con-
veniences: boolean array (filter rows), slice (slice rows), or boolean DataFrame (set
values based on some criterion).

obj.ix[val] Selects single row of subset of rows from the DataFrame.

obj.ix[:, val] Selects single column of subset of columns.

obj.ix[val1, val2] Select both rows and columns.

reindex method Conform one or more axes to new indexes.

xs method Select single row or column as a Series by label.

icol, irow methods Select single column or row, respectively, as a Series by integer location.

get_value, set_value methods Select single value by row and column label.

Arithmetic and data alignment
One of the most important pandas features is the behavior of arithmetic between ob-
jects with different indexes. When adding together objects, if any index pairs are not
the same, the respective index in the result will be the union of the index pairs. Let’s
look at a simple example:

In [126]: s1 = Series([7.3, -2.5, 3.4, 1.5], index=['a', 'c', 'd', 'e'])

In [127]: s2 = Series([-2.1, 3.6, -1.5, 4, 3.1], index=['a', 'c', 'e', 'f', 'g'])

In [128]: s1 In [129]: s2
Out[128]: Out[129]:
a 7.3 a -2.1
c -2.5 c 3.6
d 3.4 e -1.5

128 | Chapter 5:ಗGetting Started with pandas

e 1.5 f 4.0
 g 3.1

Adding these together yields:

In [130]: s1 + s2
Out[130]:
a 5.2
c 1.1
d NaN
e 0.0
f NaN
g NaN

The internal data alignment introduces NA values in the indices that don’t overlap.
Missing values propagate in arithmetic computations.

In the case of DataFrame, alignment is performed on both the rows and the columns:

In [131]: df1 = DataFrame(np.arange(9.).reshape((3, 3)), columns=list('bcd'),
 : index=['Ohio', 'Texas', 'Colorado'])

In [132]: df2 = DataFrame(np.arange(12.).reshape((4, 3)), columns=list('bde'),
 : index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [133]: df1 In [134]: df2
Out[133]: Out[134]:
 b c d b d e
Ohio 0 1 2 Utah 0 1 2
Texas 3 4 5 Ohio 3 4 5
Colorado 6 7 8 Texas 6 7 8
 Oregon 9 10 11

Adding these together returns a DataFrame whose index and columns are the unions
of the ones in each DataFrame:

In [135]: df1 + df2
Out[135]:
 b c d e
Colorado NaN NaN NaN NaN
Ohio 3 NaN 6 NaN
Oregon NaN NaN NaN NaN
Texas 9 NaN 12 NaN
Utah NaN NaN NaN NaN

Arithmetic methods with fill values
In arithmetic operations between differently-indexed objects, you might want to fill
with a special value, like 0, when an axis label is found in one object but not the other:

In [136]: df1 = DataFrame(np.arange(12.).reshape((3, 4)), columns=list('abcd'))

In [137]: df2 = DataFrame(np.arange(20.).reshape((4, 5)), columns=list('abcde'))

In [138]: df1 In [139]: df2
Out[138]: Out[139]:
 a b c d a b c d e

Essential Functionality | 129

e 1.5 f 4.0
 g 3.1

Adding these together yields:

In [130]: s1 + s2
Out[130]:
a 5.2
c 1.1
d NaN
e 0.0
f NaN
g NaN

The internal data alignment introduces NA values in the indices that don’t overlap.
Missing values propagate in arithmetic computations.

In the case of DataFrame, alignment is performed on both the rows and the columns:

In [131]: df1 = DataFrame(np.arange(9.).reshape((3, 3)), columns=list('bcd'),
 : index=['Ohio', 'Texas', 'Colorado'])

In [132]: df2 = DataFrame(np.arange(12.).reshape((4, 3)), columns=list('bde'),
 : index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [133]: df1 In [134]: df2
Out[133]: Out[134]:
 b c d b d e
Ohio 0 1 2 Utah 0 1 2
Texas 3 4 5 Ohio 3 4 5
Colorado 6 7 8 Texas 6 7 8
 Oregon 9 10 11

Adding these together returns a DataFrame whose index and columns are the unions
of the ones in each DataFrame:

In [135]: df1 + df2
Out[135]:
 b c d e
Colorado NaN NaN NaN NaN
Ohio 3 NaN 6 NaN
Oregon NaN NaN NaN NaN
Texas 9 NaN 12 NaN
Utah NaN NaN NaN NaN

Arithmetic methods with fill values
In arithmetic operations between differently-indexed objects, you might want to fill
with a special value, like 0, when an axis label is found in one object but not the other:

In [136]: df1 = DataFrame(np.arange(12.).reshape((3, 4)), columns=list('abcd'))

In [137]: df2 = DataFrame(np.arange(20.).reshape((4, 5)), columns=list('abcde'))

In [138]: df1 In [139]: df2
Out[138]: Out[139]:
 a b c d a b c d e

Essential Functionality | 129

Essential Functionality

Out[155]: Out[156]:
 b d e Utah 1
Utah 0 1 2 Ohio 4
Ohio 3 4 5 Texas 7
Texas 6 7 8 Oregon 10
Oregon 9 10 11 Name: d

In [157]: frame.sub(series3, axis=0)
Out[157]:
 b d e
Utah -1 0 1
Ohio -1 0 1
Texas -1 0 1
Oregon -1 0 1

The axis number that you pass is the axis to match on. In this case we mean to match
on the DataFrame’s row index and broadcast across.

Function application and mapping
NumPy ufuncs (element-wise array methods) work fine with pandas objects:

In [158]: frame = DataFrame(np.random.randn(4, 3), columns=list('bde'),
 : index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [159]: frame In [160]: np.abs(frame)
Out[159]: Out[160]:
 b d e b d e
Utah -0.204708 0.478943 -0.519439 Utah 0.204708 0.478943 0.519439
Ohio -0.555730 1.965781 1.393406 Ohio 0.555730 1.965781 1.393406
Texas 0.092908 0.281746 0.769023 Texas 0.092908 0.281746 0.769023
Oregon 1.246435 1.007189 -1.296221 Oregon 1.246435 1.007189 1.296221

Another frequent operation is applying a function on 1D arrays to each column or row.
DataFrame’s apply method does exactly this:

In [161]: f = lambda x: x.max() - x.min()

In [162]: frame.apply(f) In [163]: frame.apply(f, axis=1)
Out[162]: Out[163]:
b 1.802165 Utah 0.998382
d 1.684034 Ohio 2.521511
e 2.689627 Texas 0.676115
 Oregon 2.542656

Many of the most common array statistics (like sum and mean) are DataFrame methods,
so using apply is not necessary.

The function passed to apply need not return a scalar value, it can also return a Series
with multiple values:

In [164]: def f(x):
 : return Series([x.min(), x.max()], index=['min', 'max'])

In [165]: frame.apply(f)

132 | Chapter 5:ಗGetting Started with pandas

Out[155]: Out[156]:
 b d e Utah 1
Utah 0 1 2 Ohio 4
Ohio 3 4 5 Texas 7
Texas 6 7 8 Oregon 10
Oregon 9 10 11 Name: d

In [157]: frame.sub(series3, axis=0)
Out[157]:
 b d e
Utah -1 0 1
Ohio -1 0 1
Texas -1 0 1
Oregon -1 0 1

The axis number that you pass is the axis to match on. In this case we mean to match
on the DataFrame’s row index and broadcast across.

Function application and mapping
NumPy ufuncs (element-wise array methods) work fine with pandas objects:

In [158]: frame = DataFrame(np.random.randn(4, 3), columns=list('bde'),
 : index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [159]: frame In [160]: np.abs(frame)
Out[159]: Out[160]:
 b d e b d e
Utah -0.204708 0.478943 -0.519439 Utah 0.204708 0.478943 0.519439
Ohio -0.555730 1.965781 1.393406 Ohio 0.555730 1.965781 1.393406
Texas 0.092908 0.281746 0.769023 Texas 0.092908 0.281746 0.769023
Oregon 1.246435 1.007189 -1.296221 Oregon 1.246435 1.007189 1.296221

Another frequent operation is applying a function on 1D arrays to each column or row.
DataFrame’s apply method does exactly this:

In [161]: f = lambda x: x.max() - x.min()

In [162]: frame.apply(f) In [163]: frame.apply(f, axis=1)
Out[162]: Out[163]:
b 1.802165 Utah 0.998382
d 1.684034 Ohio 2.521511
e 2.689627 Texas 0.676115
 Oregon 2.542656

Many of the most common array statistics (like sum and mean) are DataFrame methods,
so using apply is not necessary.

The function passed to apply need not return a scalar value, it can also return a Series
with multiple values:

In [164]: def f(x):
 : return Series([x.min(), x.max()], index=['min', 'max'])

In [165]: frame.apply(f)

132 | Chapter 5:ಗGetting Started with pandas

From: Python for Data Analysis; Wes McKinney

Function Application and Mapping

From: Python for Data Analysis; Wes McKinney

Out[165]:
 b d e
min -0.555730 0.281746 -1.296221
max 1.246435 1.965781 1.393406

Element-wise Python functions can be used, too. Suppose you wanted to compute a
formatted string from each floating point value in frame. You can do this with applymap:

In [166]: format = lambda x: '%.2f' % x

In [167]: frame.applymap(format)
Out[167]:
 b d e
Utah -0.20 0.48 -0.52
Ohio -0.56 1.97 1.39
Texas 0.09 0.28 0.77
Oregon 1.25 1.01 -1.30

The reason for the name applymap is that Series has a map method for applying an ele-
ment-wise function:

In [168]: frame['e'].map(format)
Out[168]:
Utah -0.52
Ohio 1.39
Texas 0.77
Oregon -1.30
Name: e

Sorting and ranking
Sorting a data set by some criterion is another important built-in operation. To sort
lexicographically by row or column index, use the sort_index method, which returns
a new, sorted object:

In [169]: obj = Series(range(4), index=['d', 'a', 'b', 'c'])

In [170]: obj.sort_index()
Out[170]:
a 1
b 2
c 3
d 0

With a DataFrame, you can sort by index on either axis:

In [171]: frame = DataFrame(np.arange(8).reshape((2, 4)), index=['three', 'one'],
 : columns=['d', 'a', 'b', 'c'])

In [172]: frame.sort_index() In [173]: frame.sort_index(axis=1)
Out[172]: Out[173]:
 d a b c a b c d
one 4 5 6 7 three 1 2 3 0
three 0 1 2 3 one 5 6 7 4

Essential Functionality | 133

Ranking is closely related to sorting, assigning ranks from one through the number of
valid data points in an array. It is similar to the indirect sort indices produced by
numpy.argsort, except that ties are broken according to a rule. The rank methods for
Series and DataFrame are the place to look; by default rank breaks ties by assigning
each group the mean rank:

In [183]: obj = Series([7, -5, 7, 4, 2, 0, 4])

In [184]: obj.rank()
Out[184]:
0 6.5
1 1.0
2 6.5
3 4.5
4 3.0
5 2.0
6 4.5

Ranks can also be assigned according to the order they’re observed in the data:

In [185]: obj.rank(method='first')
Out[185]:
0 6
1 1
2 7
3 4
4 3
5 2
6 5

Naturally, you can rank in descending order, too:

In [186]: obj.rank(ascending=False, method='max')
Out[186]:
0 2
1 7
2 2
3 4
4 5
5 6
6 4

See Table 5-8 for a list of tie-breaking methods available. DataFrame can compute ranks
over the rows or the columns:

In [187]: frame = DataFrame({'b': [4.3, 7, -3, 2], 'a': [0, 1, 0, 1],
 : 'c': [-2, 5, 8, -2.5]})

In [188]: frame In [189]: frame.rank(axis=1)
Out[188]: Out[189]:
 a b c a b c
0 0 4.3 -2.0 0 2 3 1
1 1 7.0 5.0 1 1 3 2
2 0 -3.0 8.0 2 2 1 3
3 1 2.0 -2.5 3 2 3 1

Essential Functionality | 135

Sorting and Ranking

From: Python for Data Analysis; Wes McKinney

Table 5-10. Descriptive and summary statistics

Method Description

count Number of non-NA values

describe Compute set of summary statistics for Series or each DataFrame column

min, max Compute minimum and maximum values

argmin, argmax Compute index locations (integers) at which minimum or maximum value obtained, respectively

idxmin, idxmax Compute index values at which minimum or maximum value obtained, respectively

quantile Compute sample quantile ranging from 0 to 1

sum Sum of values

mean Mean of values

median Arithmetic median (50% quantile) of values

mad Mean absolute deviation from mean value

var Sample variance of values

std Sample standard deviation of values

skew Sample skewness (3rd moment) of values

kurt Sample kurtosis (4th moment) of values

cumsum Cumulative sum of values

cummin, cummax Cumulative minimum or maximum of values, respectively

cumprod Cumulative product of values

diff Compute 1st arithmetic difference (useful for time series)

pct_change Compute percent changes

Correlation and Covariance
Some summary statistics, like correlation and covariance, are computed from pairs of
arguments. Let’s consider some DataFrames of stock prices and volumes obtained from
Yahoo! Finance:

import pandas.io.data as web

all_data = {}
for ticker in ['AAPL', 'IBM', 'MSFT', 'GOOG']:
 all_data[ticker] = web.get_data_yahoo(ticker, '1/1/2000', '1/1/2010')

price = DataFrame({tic: data['Adj Close']
 for tic, data in all_data.iteritems()})
volume = DataFrame({tic: data['Volume']
 for tic, data in all_data.iteritems()})

I now compute percent changes of the prices:

In [209]: returns = price.pct_change()

In [210]: returns.tail()

Summarizing and Computing Descriptive Statistics | 139

Descriptive and Summary Statistics

• Directly from Dict or Series
• From a Comma-Separated File – CSV file
– pandas.read_csv()
– Can infer headers/column names if present, otherwise may want to reindex

• From an Excel File
– pandas.read_excel()

• From an HTML Table
– pandas.read_html()

• From a Database using SQL (we’ll see soon…)
• From Clipboard, URL, Google Analytics, …

From: Python for Data Analysis; Wes McKinney

Creating Dataframes

More…

• Unique values, Value counts
• Correlation and Covariance
• Functions for handling missing data – in a few classes
– dropna(), fillna(), isnull()

• Broadcasting
• Pivoting

• We will (and have) see some of these as we discuss data wrangling, cleaning, etc.

Tidy Data
• The structure Wickham defines as tidy has the

following attributes:
– Each variable forms a column and contains values
– Each observation forms a row
– Each type of observational unit forms a table

• A few definitions:
– Variable: A measurement or an attribute. Height,

weight, sex, etc.
– Value: The actual measurement or attribute. 152

cm, 80 kg, female, etc.
– Observation: All values measure on the same

unit. Each person.
• But also:
– Names of files/DataFrames = description of one

dataset
– Enforce one data type per dataset (ish)

age wgt_kg hgt_cm

12.2 42.3 145.1

11.0 40.8 143.8

15.6 65.3 165.3

35.1 84.2 185.8

Labels

O
bs

er
va

tio
ns

Variables

Example
• Variable: measure or attribute:
– age, weight, height, sex

• Value: measurement of attribute:
– 12.2, 42.3kg, 145.1cm, M/F

• Observation: all measurements for an object
– A specific person is [12.2, 42.3, 145.1, F]

age wgt_kg hgt_cm

12.2 42.3 145.1

11.0 40.8 143.8

15.6 65.3 165.3

35.1 84.2 185.8

Tidying Data I

Name Treatment A Treatment B
John Smith - 2
Jane Doe 16 11
Mary Johnson 3 1

Thanks to http://jeannicholashould.com/tidy-data-in-python.html

?????????????

Name Treatment A Treatment B Treatment C Treatment D
John Smith - 2 - -
Jane Doe 16 11 4 1
Mary Johnson 3 1 - 2

?????????????

Tidying Data II
Name Treatment Result
John Smith A -
John Smith B 2
John Smith C -
John Smith D -
Jane Doe A 16
Jane Doe B 11
Jane Doe C 4
Jane Doe D 1
Mary Johnson A 3
Mary Johnson B 1
Mary Johnson C -
Mary Johnson D 2

In a few
lectures …

Melting Data I
religion <$10k $10-20k $20-30k $30-40k $40-50k $50-75k

Agnostic 27 34 60 81 76 137

Atheist 12 27 37 52 35 70

Buddhist 27 21 30 34 33 58

Catholic 418 617 732 670 638 1116

Dont
know/refused 15 14 15 11 10 35

Evangelical Prot 575 869 1064 982 881 1486

Hindu 1 9 7 9 11 34

Historically
Black Prot 228 244 236 238 197 223

Jehovahs
Witness 20 27 24 24 21 30

Jewish 19 19 25 25 30 95

?????????????

Melting Data II
f_df = pd.melt(df,

["religion"],
var_name="income",
value_name="freq")

f_df = f_df.sort_values(by=["religion"])
f_df.head(10)

religion income freq

Agnostic <$10k 27

Agnostic $30-40k 81

Agnostic $40-50k 76

Agnostic $50-75k 137

Agnostic $10-20k 34
Agnostic $20-30k 60

Atheist $40-50k 35

Atheist $20-30k 37

Atheist $10-20k 27

Atheist $30-40k 52

• Billboard Top 100 data for songs, position on the Top 100 for 75 weeks, with two “messy” bits:
– Column headers for each of the 75 weeks
– If a song didn’t last 75 weeks, those columns have are null

Thanks to http://jeannicholashould.com/tidy-data-in-python.html

year artist.inv
erted track time genre date.ente

red
date.peak
ed x1st.week x2nd.wee

k ...

2000 Destiny's
Child

Independent
Women Part I 3:38 Rock 2000-09-

23
2000-11-
18 78 63.0 ...

2000 Santana Maria, Maria 4:18 Rock 2000-02-
12

2000-04-
08 15 8.0 ...

2000 Savage
Garden

I Knew I Loved
You 4:07 Rock 1999-10-

23
2000-01-
29 71 48.0 ...

2000 Madonn
a Music 3:45 Rock 2000-08-

12
2000-09-
16 41 23.0 ...

2000
Aguilera
,
Christina

Come On Over
Baby 3:38 Rock 2000-08-

05
2000-10-
14 57 47.0 ...

2000 Janet Doesn't Really
Matter 4:17 Rock 2000-06-

17
2000-08-
26 59 52.0 ...

Messy columns!

More Complicated Example

• Creates one row per week, per record, with its rank

Keep identifier variables
id_vars = ["year",

"artist.inverted",
"track",
"time",
"genre",
"date.entered",
"date.peaked"]

Melt the rest into week and rank columns
df = pd.melt(frame=df,

id_vars=id_vars,
var_name="week",
value_name="rank")

More Complicated Example

Formatting
df["week"] = df['week'].str.extract('(\d+)’,

expand=False).astype(int)
df["rank"] = df["rank"].astype(float)

Cleaning out unnecessary rows
df = df.dropna()

Create "date" columns
df['date'] = pd.to_datetime(

df['date.entered']) +
pd.to_timedelta(df['week'], unit='w') –
pd.DateOffset(weeks=1)

[…, “x2nd.week”, 63.0] à […, 2, 63]

More Complicated Example

Ignore now-redundant, messy columns
df = df[["year",

"artist.inverted",
"track",
"time",
"genre",
"week",
"rank",
"date"]]

df = df.sort_values(ascending=True,
by=["year","artist.inverted","track","week","rank"])

Keep tidy dataset for future usage
billboard = df

df.head(10)

More Complicated Example

year artist.in
verted track time genre week rank date

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 1 87 2000-02-26

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 2 82 2000-03-04

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 3 72 2000-03-11

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 4 77 2000-03-18

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 5 87 2000-03-25

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 6 94 2000-04-01

2000 2 Pac Baby Don't Cry (Keep Ya Head Up II) 4:22 Rap 7 99 2000-04-08

2000 2Ge+her The Hardest Part Of Breaking Up (Is
Getting Ba... 3:15 R&B 1 91 2000-09-02

2000 2Ge+her The Hardest Part Of Breaking Up (Is
Getting Ba... 3:15 R&B 2 87 2000-09-09

2000 2Ge+her The Hardest Part Of Breaking Up (Is
Getting Ba... 3:15 R&B 3 92 2000-09-16

?????????????

More Complicated Example

More To Do?
• Column headers are values, not variable names?
– Good to go!

• Multiple variables are stored in one column?
– Maybe (depends on if genre text in raw data was multiple)

• Variables are stored in both rows and columns?
– Good to go!

• Multiple types of observational units in the same table?
– Good to go! One row per song’s week on the Top 100.

• A single observational unit is stored in multiple tables?
– Don’t do this!

• Repetition of data?
– Lots! Artist and song title’s text names. Which leads us to …

SQL And Relational Data

• Relational data:
– What is a relation, and how do they interact?

• Querying databases:
– SQL
– SQLite
– How does this relate to pandas?

• Joins

Thanks to Zico Kolter for some structure for this lecture!

