Tulane
University

Data Wrangling (1): Munging,
Tidy Data, and Working with
Multiple Data Tables

Nicholas Mattei, Tulane University
CMPS3660 — Introduction to Data Science — Fall 2019
https://rebrand.ly/TUDataScience

Many Thanks

Slides based off Introduction to Data Science from John P. Dickerson -
https://cmsc320.github.io/

https://rebrand.ly/TUDataScience
https://cmsc320.github.io/

%lrllailxrfleersity

Announcements

* Project]l and Milestonel Updates
— Reading really important here!

* Survey Results!
e Lab4+Lab5

* Weekly Questions 4

* On to DATA!

r{ljlrllailxrfleersity

Survey que Home Messqges The course is moving...

38 responses

@ Way too fast!

@ A bit too fast

@ Just about right

@ We should be going faster, I'm bored
@ We need to go a lot faster!

e 28+ of you like or really like notebooks!
— 2 of you really hate them!

* Some of you say I'm talking too fast!

e 6-7 of you Hate Docker!

* What we want (that I'll deliver): {d like to do [ANSWER] Lab Days
— More Depth, More Theory (5) 38 responses
— PPT/Lectures (5-7)?

® More
— Too much, Not enough; ® Fower
interesting, boring; clear, too muddled

— More Feedback!
e What we want (I can’t fix).
— Class too early.

— Too much programming.

%ltlggg‘sity

Next Couple of Lectures (Till Midterm)

e Tables in the Abstract
— How, Why
— Operations

* Principles of Tidy Data

e Tables in Pandas
e Tables in SQL and RMDBS

e 2 More Labs.

UNDERSTANDING GRAVTY:
SPACE-TIME IS LIKE A
RUBBER SHEET, MASSVE
OBTECTS DISTORT THE
SHEET, AND—

\ WA,

\
Q >

THEY DISORT IT
BECAVSE HEYRE
PUUED DOWN

BY...WHAT?

\

—= (O

SPACE-TIME 1S LKE THIS
SET OF EQUATIONS, FOR
WHICH ANY ANALOGY MUST
BE ANAPPROXIMATION.

k BOOCOONG:

%lrlleigfleersity

The Data LifeCycle

Exploratory
Analysis
&
Data
Visualization

Analysis, Insight
Hypothesis &
Testing, Policy
Decision

Data Data
Collection Processing

r{lJlrll?{flgrsity

Tables

Special Column, called “Index”, or
IIIDII, OI‘ IIKeyII
Usually, no duplicates Allowed

\

Variables

(also called Attributes, or
Columns, or Labels)

!

!

}

ID age wgt_kg hgt cm

1 12.2 42.3 145.1 wu|

2 11.0 40.8 #1438 \
3 15.6 65.3 165.3 o
4 35.1 #8472 185.8

Entries or
values

Tulane
University

1. Select/Slicing

* Select only some of the rows, or some of the columns, or a combination.

ID
ID age wegt ke hgt cm Only columns 1 12.2
ID and Age) 110
1 12.2 42.3 145.1 :
2 11.0 40.8 143.8 3 15.6
3 15.6 65.3 165.3 4 35.1
4 35.1 84.2 185.8
Both
Only rows O
with wgt > 41
> <
1D age wgt_ kg hgt cm 1 199
1 12.2 42.3 145.1
3 15.6
3 15.6 65.3 165.3
4 35.1 84.2 185.8 4 35.1

r{lJlrll?{fle;crsity

2. Aggregate/Reduce

e Combine values across a column into a single value

73.9 232.6 640.0
ID age wgt_ kg hgt cm y
1 12.2 423 145.1 |
2 11.0 40.8 1438 MAX ESJ 84.2 185.8
3 15.6 65.3 165.3
4 35.1 84.2 185.8 SUM(wgt_kg2 - hgt_cm)
What about ID/Index column? 14167.66

Usually not meaningful to aggregate across it
May need to explicitly add an ID column

Tulane
University

Practical Interlude: np.nan ID age wgt kg hgt cm
1 12.2 42.3 145.1
* We use numpy.nan to signify a value 2 11.0 40.8 143.8
is missing or not a number. 3 15.6 65.3 165.3
4 -- 84.2 185.8
e If we don’t use NaN’s then Pandas
doesn’t know how to handle the SUM
data.
e Breaks in all sorts of awful ways. ERROR!
ID age wgt_kg hgt cm
¢ (Demo Notebook)
1 12.2 42.3 145.1 SUM
2 110 408 143.8 > 388
3 15.6 65.3 165.3
4 np.NaN 84.2 185.8

%lrllzil{/lg‘sity

3. Map

* Apply a function to every row, possibly creating more or fewer columns

ID Address

1 College Park, MD, 20742
2 Washington, DC, 20001
3 Silver Spring, MD 20901

[—

SPLIT(“,”)

—

ID City State Zipcode
1 College Park MD 20742
2 Washington DC 20001
3 Silver Spring MD 20901

Variations that allow one row to generate multiple rows in the
output (sometimes called “flatmap” or “melt” as we’ll see later.)

Tulane
University

4. Group By

e Group tuples together by column/dimension.

S
>
o)
A

By ‘A’

1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

S
=¥
@

A =foo

1 3 6.6

3 4 3.1

4 3 8.0

7 4 2.3

8 3 8.0
A =bar

5=l %lrllzil{/lg‘sity

4. Group By

e Group tuples together by column/dimension. | B=2

w)
>
o
@)
N
on
o))
=1
T
N

1 foo 3 66 6 bar 25
2 bar 2 4.7 B=3
3 foo 4 3.1 By ‘B’ D A C

>
4 foo 3 8.0 1 foo 6.6
5 bar 1 1.2 1 foo 3.0
6 bar 2 2.5 3 foo 3.0
7 foo 4 2.3 B-4
8 foo 3 8.0

3 foo 3.1

%lrllail{/lg‘sity

4. Group By
e Group tuples together by column/dimension.
A=bar, B=1 A=foo, B=3
1 foo 3 6.6 5 1.2 1 6.6
2 bar 2 4.7 | 4 8.0
3 foo 4 3.1 By ‘A’, B’ A=bar, B=2 5 80
4 foo 3 8.0 A=tfoo,B=4
5 bar 1 1.2 2 4.7
6 bar 2 25 6 25 3 31
7 foo 4 2.3 7 2.3
8 foo 3 8.0

5. Group By Aggregate

e Group the aggregate per group.

S
>
o)
A

1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
Group by ‘B’
4 foo 3 8.0 SumonC
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

Tulane
University

=1

B=1 B
—p
5 bar 1.2 | 1.2
B=2

ID A C

2 bar 4.7
6 bar 2.5
B=3
ID A @
1 foo 6.6
4 foo 8.0
8 foo 8.0
B=4
ID A @
3 foo 3.1
7 foo 2.3

B=2
e
7.2
B=3
 ———
22.6
B=4

e

B=1 %lrllail{/lg‘sity

5. Group By Aggregate

¢ Final result usually seen as a table.

B=2
ID A B C
D A B C mm B SUM(C)
1 foo 3 6.6
1 1.2
2 b 2 4.7
ar B3 > |9 7.2
3 foo 4 3.1
Group by ’B; 3 22.6
4 foo 3 8.0 Sum on C 4 5.4
5 bar 1 1.2 22.6
6 bar 2 2.5
B=4
7 foo 4 2.3
8 foo 3 8.0
5.4

Tulane
University

5.5 Pivot Tables (Data Cubes)

e Laying out the possible values of multiple axes and aggregating them.

Can have more than two dimensions, need hierarchal indexes (later).

Index A, Columns B

ID A B C

1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

-
Values C, Agg=Sum

16

%lrll?{flgrsity

5.5 Pivot Tables (Data Cubes)

e Laying out the possible values of multiple axes and aggregating them.
— Can have more than two dimensions, need hierarchal indexes (later).

1 survivors cube = titanic_df.pivot table(/ /
2 index="sex", columns=["adult", "pclass"],

values="survived", aggfunc=np.mean)
survivors_cube

| 95] 95| 54| |
adult False True b
pclass 1 2 3 1 2 3 % 40 46 . 15
sex 2 Q & “
female 0.947368 0.952381 0.536364 0.968000 0.870588 0.443396

male 0.400000 0.464286 0.147059 0.326389 0.083916 0.155709

17

Tulane
University

6. Union/Intersection/Difference

* Set operations — only if the two tables have identical attributes/columns

ID A B C

ID A B C ID A B C

1 foo 3 6.6 5 bar 1 1.2
> bar 2 47 |Ule bar 2 25
3 foo 4 3.1 7 foo 4 2.3
4 foo 3 8.0 8 foo 3 8.0

Similarly Intersection and Set Difference
manipulate tables as Sets

IDs may be treated in different ways, resulting in
somewhat different behaviors

1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

%lrllzil{/lg‘sity

7. Merge or Join

e Combine rows/tuples across two tables if they have the same key.

* This example is called an Inner Join

1 foo 3 1 1.2
2 bar 2 N 2 2.5 N
3 foo 4 3 2.3
4 foo 3 5 8.0

What about IDs not present in both tables?
Often need to keep them around

Can “pad” with NaN (depends on software!)

Tulane
University

7. Merge or Join (Outer or Full Join)

e Combine rows/tuples across two tables if they have the same key.

e Quter joins can be used to "pad” IDs that don’t appear in both tables
Three variants: LEFT, RIGHT, FULL
SQL Terminology -- Pandas has these operations as well

ID A B

1

foo

bar

foo

2
3
4

foo

3
2
4
3

1

1.2

2.5

2.3

2
3
5

8.0

C
1 foo 3 1.2
2 bar 2 2.5
3 foo 4 2.3

%ltllail\lfleersity

Types of Joins

In Pandas this is called a

FULL OUTTER JOIN!
<] INNERJOIN FULLJOIN >

right
table

D LEFTJOIN RIGHTJOIN DX

Image credit: http://www.dofactory.com/sql/join

Tulane
University

7. Merge or Join (Left Join)

e Combine rows/tuples across two tables if they have the same key.

e Quter joins can be used to "pad” IDs that don’t appear in both tables
Three variants: LEFT, RIGHT, FULL
SQL Terminology -- Pandas has these operations as well

ID A B

2
3
4

1 foo 3
bar 2

foo 4

3

foo

1

1.2

2.5

2.3

2
3
5

8.0

1 foo 3 1.2
2 bar 2 2.5
3 foo 4 2.3
4 foo 3 NaN

Tulane
University

7. Merge or Join (Right Join)

e Combine rows/tuples across two tables if they have the same key.

e Quter joins can be used to "pad” IDs that don’t appear in both tables
Three variants: LEFT, RIGHT, FULL
SQL Terminology -- Pandas has these operations as well

ID A B

1

foo

bar

foo

2
3
4

foo

3
2
4
3

ID A B C
1 1.2 1 foo 3 1.2
2 2.5 2 bar 2 2.5
3 2.3 3 foo 4 2.3
5 8.0 5 NaN NaN 8.0

%lrllgil{fg‘sity

Quick Review

e Tables: A simple, common abstraction

— Subsumes a set of “strings” —a common input, or a list of lists, or a list of dicts with the
same keys.

e Operations on tables:

— Select, Map, Aggregate, Reduce, Join/Merge, Union/Concat, Group By

® These may have different names! In Pandas it’s a merge while in SQL it’s a join.

— Actually, this isn’t quite right -- Pandas has a join command that will only join based on
the index! It also has a merge command that allows for more options — see Lab 7!

— Pandas also uses merge as we’ll see in lab while SQL uses Union

® There can be subtle variations in implementation on different data systems. Remember I'm
giving you the high level but you need to read the docs for your software when you use this stufft’

