

Data Wrangling (I): Munging, Tidy Data, and Working with Multiple Data Tables

Nicholas Mattei, *Tulane University CMPS3660 – Introduction to Data Science – Fall* 2019 <u>https://rebrand.ly/TUDataScience</u>

<u>Many Thanks</u> Slides based off Introduction to Data Science from John P. Dickerson -<u>https://cmsc320.github.io/</u>

Announcements

- Project1 and Milestone1 Updates
 - Reading really important here!
- Survey Results!
- Lab 4 + Lab 5
- Weekly Questions 4
- On to DATA!

Survey Take Home Messages

- 28+ of you like or really like notebooks!
 - 2 of you really hate them!
- Some of you say I'm talking too fast!
- 6-7 of you Hate Docker!
- What we want (that I'll deliver):
 - More Depth, More Theory (5)
 - PPT/Lectures (5-7)?
 - Too much, Not enough; interesting, boring; clear, too muddled
 - More Feedback!
- What we want (I can't fix).
 - Class too early.
 - Too much programming.

38 responses

I'd like to do [ANSWER] Lab Days

38 responses

Next Couple of Lectures (Till Midterm)

- Tables in the Abstract
 - How, Why
 - Operations
- Principles of Tidy Data
- Tables in Pandas
- Tables in SQL and RMDBS
- 2 More Labs.

The Data LifeCycle

Tables

1. Select/Slicing

• Select only some of the rows, or some of the columns, or a combination.

					ID	age
	l age	wet ke	hgt cm	Only columns	1	12.2
1	12.2	42.3	145.1	ID and Age	2	11.0
2	11.0	40.8	143.8		3	15.6
3	15.6	65.3	165.3	-	4	35.1
4	35.1	84.2	185.8	-		
	Only rows with wgt > 41	ļ		Both		age
ID	age age	wgt_kg	hgt_cm	1		12.2
1 1	age 12.2	wgt_kg 42.3	hgt_cm 145.1	1		12.2
1 1 3	age 12.2 15.6	wgt_kg 42.3 65.3	hgt_cm 145.1 165.3	1		12.2 15.6

2. Aggregate/Reduce

• Combine values across a column into a single value

Practical Interlude: np.nan

- We use numpy.nan to signify a value is missing or not a number.
- If we don't use NaN's then Pandas doesn't know how to handle the data.
- Breaks in all sorts of awful ways.
- (Demo Notebook)

ID	age	wgt_kg	hgt_cm		
1	12.2	42.3	145.1	SUM	· · · · · · · · · · · · · · · · · · ·
2	11.0	40.8	143.8	38.8	38.8
3	15.6	65.3	165.3		
4	np.NaN	84.2	185.8		

ERROR!

3. Map

• Apply a function to every row, possibly creating more or fewer columns

ID	Address		ID	City	State	Zipcode
1	College Park, MD, 20742	SPLIT(",")	1	College Park	MD	20742
2	Washington, DC, 20001		2	Washington	DC	20001
3	Silver Spring, MD 20901		3	Silver Spring	MD	20901

Variations that allow one row to generate multiple rows in the output (sometimes called "flatmap" or "melt" as we'll see later.)

4. Group By

• Group tuples together by column/dimension.

ID	Α	В	С
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

A = foo

ID	B	С
1	3	6.6
3	4	3.1
4	3	8.0
7	4	2.3
8	3	8.0

A = bar

ID	B	С
2	2	4.7
5	1	1.2
6	2	2.5

B = 1

4. Group By

• Group tuples together by column/dimension.

ID	Α	B	С
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

By 'B'	

ID	Α	С	
5	bar	1.2	

B = 2	2
-------	---

ID	Α	С
2	bar	4.7
6	bar	2.5

ID	Α	С
1	foo	6.6
4	foo	8.0
8	foo	8.0

B = 4

ID	Α	С
3	foo	3.1
7	foo	2.3

4. Group By

• Group tuples together by column/dimension.

				$\Lambda - har B - 1$	A = too, B = 3
ID	A	B	С	A = bal, b = 1 $ID = C$	ID C
1	foo	3	6.6	5 1.2	1 6.6
2	bar	2	4.7		4 8.0
3	foo	4	3.1	By 'A', 'B' $A = bar, B = 2$	8 8.0
4	foo	3	8.0	ID C	A = foo, B = 4
5	bar	1	1.2	2 4.7	ID C
6	bar	2	2.5	6 2.5	3 3.1
7	foo	4	2.3		7 2.3
8	foo	3	8.0	1	

5. Group By Aggregate

• Group the aggregate per group.

Α

foo

bar

foo

foo

bar

bar

foo

foo

B

3

2

4

3

1

2

4

3

C

6.6

4.7

3.1

8.0

1.2

2.5

2.3

8.0

ID

1

2

3

4

5

6

7

8

		B = 1		B = 1	Ý	Tulane
	ID	Α	С	Sum (C)		
е	5	bar	1.2	1.2		
		B = 2				
	ID	A	С	B = 2		
	2	bar	4.7	Sum (C)	
	6	bar	2.5	7.2		
		B = 3		B = 3		
Group by 'B'	ID	Α	С	Sum (C		
Sum on C	1	foo	6.6	22.6		
	4	foo	8.0			
	8	foo	8.0	B = 4		
		$\mathbf{B}=4$		Sum (C		
	ID	A	С	5.4		
	3	foo	3.1			

foo

7

2.3

B = 1

Sum (C)

1.2

5. Group By Aggregate

• Final result usually seen as a table.

5.5 Pivot Tables (Data Cubes)

- Laying out the possible values of multiple axes and aggregating them.
 - Can have more than two dimensions, need hierarchal indexes (later).

ID	Α	B	С
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

Index A, Columns B
Values C, Agg=Sum

A B>	1	2	3	4
foo	0	0	22.6	5.4
bar	1.2	7.2	0	0

5.5 Pivot Tables (Data Cubes)

- Laying out the possible values of multiple axes and aggregating them.
 - Can have more than two dimensions, need hierarchal indexes (later).

1 2 3 4	<pre>survivors_cube = titanic_df.pivot_table(index="sex", columns=["adult", "pclass"], values="survived", aggfunc=np.mean) survivors_cube</pre>								
adult False True									
pclas	S	1	2	3	1	2	3		
se	X								
fema	e	0.947368	0.952381	0.536364	0.968000	0.870588	0.443396		
ma	e	0.400000	0.464286	0.147059	0.326389	0.083916	0.155709		

6. Union/Intersection/Difference

• Set operations – only if the two tables have identical attributes/columns

ID	Α	B	С		ID	Α	B	С
1	foo	3	6.6	J	5	bar	1	1.2
2	bar	2	4.7	U	6	bar	2	2.5
3	foo	4	3.1		7	foo	4	2.3
4	foo	3	8.0	8	8	foo	3	8.0

ID	Α	B	С
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

Similarly Intersection and Set Difference manipulate tables as Sets

IDs may be treated in different ways, resulting in somewhat different behaviors

7. Merge or Join

- Combine rows/tuples across two tables *if they have the same key*.
- This example is called an *Inner Join*

ID	Α	Β		ID	С
1	foo	3		1	1 7
	100	3	-		1.2
2	bar	2		2	2.5
3	foo	Δ		3	23
	100	T			2.0
4	foo	3		5	8.0

What about IDs not present in both tables?

Often need to keep them around

Can "pad" with NaN (depends on software!)

7. Merge or Join (Outer or Full Join)

- Combine rows/tuples across two tables if they have the same key.
- Outer joins can be used to "pad" IDs that don't appear in both tables
 - Three variants: LEFT, RIGHT, FULL
 - SQL Terminology -- Pandas has these operations as well

ID	А	В	ID	С	ID	A	B	С
1	foo	3	1	12	1	foo	3	1.2
2	har	2 2	2	2.5	2	bar	2	2.5
2	faa	<u> </u>	2	2.5	 3	foo	4	2.3
3	100 faa	4	5	2.5	4	foo	3	NaN
4	100	3	3	0.0	5	NaN	NaN	8.0

Types of Joins In Pandas this is called a FULL OUTTER JOIN! FULL JOIN INNER JOIN \bowtie left right left right table table table table LEFT JOIN \bowtie \bowtie **RIGHT JOIN** left right left right table table table table

Image credit: http://www.dofactory.com/sql/join

7. Merge or Join (Left Join)

- Combine rows/tuples across two tables if they have the same key.
- Outer joins can be used to "pad" IDs that don't appear in both tables
 - Three variants: LEFT, RIGHT, FULL
 - SQL Terminology -- Pandas has these operations as well

ID	A	В		ID	С	ID	Α	B	С
1	foo	3		1	12	1	foo	3	1.2
2	har	2	-	2	2.5	2	bar	2	2.5
2	fac	<u> </u>		2	2.5	 3	foo	4	2.3
3	100	4	-	3	2.3	4	foo	3	NaN
4	too	3		5	8.0			-	- 1012 1

7. Merge or Join (Right Join)

- Combine rows/tuples across two tables if they have the same key.
- Outer joins can be used to "pad" IDs that don't appear in both tables
 - Three variants: LEFT, RIGHT, FULL
 - SQL Terminology -- Pandas has these operations as well

ID	Α	В		ID	С		ID	Α	B	С
1	foo	3	M	1	1.2		1	foo	3	1.2
2	bar	2		2	2.5		2	bar	2	2.5
3	foo	4		3	2.3		3	foo	4	2.3
4	foo	3		5	8.0		5	NaN	NaN	8.0

Quick Review

- Tables: A simple, common abstraction
 - Subsumes a set of "strings" a common input, or a list of lists, or a list of dicts with the same keys.
- Operations on tables:
 - Select, Map, Aggregate, Reduce, Join/Merge, Union/Concat, Group By
- *These may have different names!* In Pandas it's a *merge* while in SQL it's a *join*.
 - Actually, this isn't quite right -- Pandas has a *join* command that will only join based on the *index*! It also has a *merge* command that allows for more options – see Lab 7!
 - Pandas also uses *merge* as we'll see in lab while SQL uses Union
- There can be subtle variations in implementation on different data systems. Remember I'm giving you the high level but you need to *read the docs for your software* when you use this stuff?⁴