

Visualization

Slides adapted from Alex Lex (Univ. of Utah), Joshua A. Levine (Univ. of Arizona), Carlos Scheidegger (Univ. of Arizona) and others.

What is Visualization?

"a cognitive process performed by humans in forming a mental image of a domain space. In computer and information science it is, more specifically, the *visual* representation of a domain space using *graphics, images, animated sequences*, and sound augmentation to present the data, structure, and dynamic behavior of large, complex data sets that represent systems, events, processes, objects, and concepts" J. G. Williams, K. M. Sochats, and E. Morse. "Visualization." Annual Review of Information Science and Technology (ARIST) 30 (1995), 161–207

Computer-based visualization systems provide *visual* representations of datasets designed to help people carry out tasks more effectively. - Our book

Visualization is computer graphics to aid understanding of data

Why do we use visualization?

- To inform
- To communicate
- To explore

Why have a human in the loop?

- don't need vis when fully automatic solution exists and is trusted many analysis problems are ill-specified
- don't know exactly what questions to ask in advance
- possibilities
 - long-term use for end users (e.g. exploratory analysis of scientific data)
 - presentation of known results
 - stepping stone to better understanding of requirements before developing models
 - help developers of automatic solution refine/debug, determine parameters help end users of automatic solutions verify, build trust

The Ability Matrix

Computer σ of Performance

Data Storage

Numerical Calculations

Searching/Finding

Logic

Performance of a Human

Insight is generated by the human – not the computer!

.

Planning Diagnosis Prediction

> Cognition Common Knowledge Creativity

Why have a human in the loop?

Machine Learning is just Math. Sometimes it makes sense ...

Google Translate

Francis Anscombe's Quartet (1973)

	Set A		Set B		Set C		Set D	
	X	Y	X	Υ	X	Y	X	Y
0	10	8.04	10	9.14	10	7.46	8	6.58
1	8	6.95	8	8.14	8	6.77	8	5.76
2	13	7.58	13	8.74	13	12.74	8	7.71
3	9	8.81	9	8.77	9	7.11	8	8.84
4	11	8.33	11	9.26	11	7.81	8	8.47
5	14	9.96	14	8.10	14	8.84	8	7.04
6	6	7.24	6	6.13	6	6.08	8	5.25
7	4	4.26	4	3.10	4	5.39	19	12.50
8	12	10.84	12	9.13	12	8.15	8	5.56
9	7	4.82	7	7.26	7	6.42	8	7.91
10	5	5.68	5	4.74	5	5.73	8	6.89
mean	9.00	7.50	9.00	7.50	9.00	7.50	9.00	7.50
std	3.32	2.03	3.32	2.03	3.32	2.03	3.32	2.03
corr	0.82		0.82		0.82		0.82	
lin. reg.	y = 3.00 + 0.500x		y = 3.00 + 0.500x		y = 3.00 + 0.500x		y = 3.00 + 0.500x	

Anscombe's Quartet

Datasaurus Dozen

Matejka, Justin, and George Fitzmaurice. "Same stats, different graphs: generating datasets with varied appearance and identical statistics through simulated annealing." Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. ACM, 2017.

$$\mu_x = 54.02$$
$$\mu_y = 48.09$$
$$\sigma_y = 14.52$$
$$\sigma_y = 24.79$$
$$corr = \pm 0.32$$

Human Eye Bandwidth Analogy

History

Edmond Halley (1686) Current Maps

• Edmond Halley 1686

William Playfair

Time series

Exports and Imports to and from DENMARK & NORWAY from 1700 to 1780.

The Bottom line is divided into Years, the Right hand line into L10000 each. Note water 562 sound Linder.

• 1786, 1789, 1801

Bar

Pie

31

European

Eadweard Muybridge (1878), The Horse in Motion

John Snow (1854), Cholera Epidemic

Charles Minard (1869), Napoleon's Russian Campaign

Encodes troop numbers, temperature, distances, location, directions, and time ${}^{\bullet}$

Perception What are we good and bad at seeing? (mostly we'll talk about bad)

Perception vs. Cognition

Perception

- Eye, optical nerve, visual cortex
- Basic perception
- First processing
- (edges, shapes)
- Not conscious
- Reflexes

Cognition

- Recognizing objects
- Relations between objects
- Conclusion drawing
- Problem solving
- Learning, ...

Vision is "constructed" top down from the input

"What you see when you see a thing depends on what the thing is. are seeing." - Zenon Pylyshyn, Canadian Cognitive Scientist and Philosopher

What you see the thing **as** depends on what you know about what you

Human Visual System

- 5-6 million cones
 - color vision
 - dense in the center
- ~120 million rods
 - light/dark
- Fovea: 27 times the density
 - responsible for sharp central vision
 - only cone cells

Cone Response

Human Visual System

- Vision works as sequence of *fixations* and saccades
 - *fixations*: maintaining gaze on single location (200-600 ms)
 - **saccades**: moving between different locations (20-100 ms)
- Vision not similar to a camera
 - More similar to a dynamic and ongoing construction project

Human Visual System

- No general purpose vision
- Relative judgments: strong
- Absolute judgments: weak

Qualitative Data Vis

- Color labeling (nominal information coding)
 - recommended: about 6, no more than 10

Quantitative Data Vis

- use value
- saturation works but not as good
- avoid hue
- Danger: rainbow color map

[Rogowitz and Treinish, Why Should Engineers and Scientists Be Worried About Color? http://www.research.ibm.com/people/I/Iloydt/color/color.HTM]

[Rogowitz and Treinish, How NOT to Lie with Visualization, www.research.ibm.com/dx/proceedings/pravda/truevis.htm]

Luminance

Increment

Background Level

Rainbow Color Scale

Color Blindness

- 10% of males, 1% of females (probably due to x-chromosomal) recessive inheritance)
- Most common: red-green weakness / blindness
- Reason: lack of medium or long wavelength receptors, or altered spectral sensitivity (most common: green shift)

Normal Color Perception

Deuteranopia (no green receptors)

Protanopia (no red receptors)

New York Times, Feb 12, 2012

Luminance, Brightness, Lightness

- Luminance
 - measured amount of light (luminous intensity per area)
- Brightness
 - perceived amount of light
- Lightness
 - perceived reflectance of a surface

Simultaneous Brightness Contrast

• The perceived brightness of an object is relative to it's background

Chevreul Illusion - Same color different intensities

Chevreul Illusion

Edge Enhancement

• Cornsweet effect

Why is this an issue?

- Can result in large errors of judgment
- Amplifies artifacts in computer graphics shading

Color contrast: multiple cues

Color noted is the same

© Dale Purves and R. Beau Lotto 2002

Color Contrast

© Dale Purves and R. Beau Lotto 2002

• Same colors can look different (gray)

Contrast

Color Consistency

© Dale Purves and R. Beau Lotto 2002

• Colors can made to look the same (orange and purple to red)

Constancy

Stroop Effect - Task Interference

UE	YELLOW	PINK
	BLUE	WHITE
ANGE	BLUE	WHITE
UE.	YELLOW	GREEN
REEN	BLUE	RED

Change Blindness

- Details of an image cannot be remembered across separate scenes except in areas with focused attention
- Interruption (e.g. a blink, eye saccade or blank screen) amplifies this effect
- No failure of vision system, failure based on inappropriate attentional guidance

Change Blindness

- Various theories about causes
 - Overwriting: Information that was not abstracted is lost
 - First Impression: Only initial view is abstracted
 - Nothing is Stored: Only abstract concepts are committed to memory
 - Everything is Stored, Nothing is Compared: We compare only when we are forced to
 - Feature Combination: scenes are combined as long as they make sense
- Influencing factors
 - attention
 - expectation (knowing something will change)
 - semantic importance of changed object
 - low level object properties overlooked more easily

Instructions Count how many times the players wearing white pass the basketball.

OK, what are we really good at? - Preattentive Processing

- Properties detected by the low-level visual system • very rapid - 200-250 milliseconds

 - very accurate
 - processed in parallel
- happens before focused attention -> "pre" attentive
- attention is very important for cognition
- Independent of the number of distractors!
- Opposite: sequential search (processed serially)

Difference in Hue

Difference in Curvature / Form

Not Valid for Combinations

- Conjunction Targets no unique visual property
- target: red, circle
- distractor objects have both properties

Some Preattentive Properties

line (blob) orientation

length/width

hue

intersection

3D depth cues

flicker

direction of motion

velocity of motion

Best Practices for Encoding Info

Value/Luminance/Saturation

- OK for quantitative data.
- Not very many shades recognizable

Selective: yes Grouping: yes Quantitative: somewhat (with problems) Order: yes Scales: limited

http://colorbrewer2.org

Color

- Good for qualitative data (identity channel)
- Limited number of classes/length (~7-10!)
- Can be misleading for quantitative data

Selective: yes Grouping: yes Quantitative: no Order: no Scales: limited

y channel) h (~7-10!) ve data

Shape

- Great to recognize many classes.
- No grouping, ordering.

Selective: yes Grouping: limited Quantitative: no Order: no Scales: big

Why are quantitative channels different?

Steven's Psychophysical Power Law: S= I^N

How much longer?

How much longer?

4X

How much larger (area)?

How much larger (area)?

Α

How much larger (diameter)?

Α

ЗХ

• 150 vs 50

10X

• 250 vs 125

Other Factors Affecting Accuracy

- Alignment
- Distractors
- Distance

. .

• Common scale

Heer & Bostock, 2010 Cleveland / McGill, 1984

Channels: Expressiveness Types and Effectiveness Ranks Magnitude Channels: Ordered Attributes Position on common scale Position on unaligned scale Length (1D size) Tilt/angle Area (2D size) Depth (3D position) $\mapsto \bullet$ $\rightarrow \bullet$ Color luminance Color saturation Curvature Volume (3D size)

Same Same

Some Fun Examples of Bad Vis

"There are three kinds of lies: lies, damned lies, and statistics."

Bad Charts (http://qz.com/580859/the-most-misleading-charts-of-2015-fixed/)

• Rep. Jason Chaffetz of Utah (R) Sept. 29, 2015

Better Charts (http://qz.com/580859/the-most-misleading-charts-of-2015-fixed/)

Planned Parenthood services

Better Charts (http://qz.com/580859/the-most-misleading-charts-of-2015-fixed/)

Bad Charts (http://qz.com/580859/the-most-misleading-charts-of-2015-fixed/)

UNDER PRESIDENT OBAMA, MORE STUDENTS ARE EARNING THEIR HIGH SCHOOL DIPLOMAS THAN EVER BEFORE HIGH SCHOOL GRADUATION RATE 82% 80% 78% 75% 2009-10 2010-11 2007-08 2008-09 2011-12 2012-13 2013-14 #LeadOnEducation

• White House Twitter Account, 2015

SOURCE: U.S. DEPARTMENT OF EDUCATION NATIONAL CENTER FOR EDUCATION STATISTICS

Better Charts (http://qz.com/580859/the-most-misleading-charts-of-2015-fixed/)

High school graduation rates in the US

Graphical Integrity

http://flowingdata.com/2012/08/06/fox-news-continues-charting-excellence/

Scale Distortions

http://flowingdata.com/2012/08/06/fox-news-continues-charting-excellence/

What's wrong?

CONTIGUOUS U.S.

Scale Distortions

Scale Distortions

UNEMPLOYMENT LEVEL BY RANDOM QUARTER

										_	_		-	-	•	
/	~															
Feb-09	Mar-09	Apr-09	May-09	Jun 09	Jul-09	Aug-09	Sep-09	Oct-09	Nov-09	Dec-09	Jan-10	Feb-10	Mar-10	Apr-10	May-10	

Start Scales at 0?

Global Warming?

http://www.dailymail.co.uk/sciencetech/article-2093264/Forget-global-warming--Cycle-25-need-worry-NASA-scientists-right-Thames-freezing-again.html

Framing

Framing

Temperature Anomaly -- Annual Mean (°C)

The Lie Factor

This line, representing 27.5 miles per gallon in 1985, is 5.3 inches long.

The Lie Factor

$\frac{5.3 - 0.6}{0.6} / \frac{27.5 - 18}{18} = 14.8$ (Size of effect in graphic)/(size of effect in data)

gallon in 1985, is 5.3 inches long.

Tufte, VDQI

https://viz.wtf or #wtfviz

Digi-Capital

Notes: Percentages not cumulative, "Others" include DreamGlass, EverySight, Glassear, IMMY, Iristick, Lenovo, Letinar, Lumus, Optinvent, Realmax, Snap Spectacles, Tilt Five © 2019 Digi-Capital. All rights reserved. No publication, adaptation, modification, reproduction or compilation without written permission from Digi-Capital

