
Best Practices & Git

Nicholas Mattei, Tulane University
CMPS3660 – Introduction to Data Science – Fall 2019
https://rebrand.ly/TUDataScience

Many Thanks
Slides based off Introduction to Data Science from John P. Dickerson -
https://cmsc320.github.io/

https://rebrand.ly/TUDataScience
https://cmsc320.github.io/

Announcements

• Lab day moved to Tuesday 9/10
– Make sure you can run Docker or

Anaconda on your laptop.
– Note that you can develop on

either Docker, Anaconda, System
Python… but it must run on
Docker for grading.

– Make sure you can run the
Notebook from Tuesday somehow.

• Going over Quiz 1

• Finish up Notebook from Lecture 3
2www.xkcd.com

The Data LifeCycle

Data
Collection

Data
Processing

Exploratory
Analysis

&
Data

Visualization

Analysis,
Hypothesis

Testing,
& ML

Insight
&

Policy
Decision

To
da

y

3

Reproducibility

• Extremely important aspect of data analysis
– “Starting from the same raw data, can we reproduce your analysis

and obtain the same results?”
– https://ropensci.github.io/reproducibility-

guide/sections/introduction/
• Using libraries helps:
– Since you don’t reimplement everything, reduce programmer error
– Large user bases serve as “watchdog” for quality and correctness

• Standard practices help:
– Version control: git, git, git, …, git, svn, cvs, hg, Dropbox
– Unit testing: unittest (Python), RUnit (R), testthat
– Share and publish: github, gitlab

Many slides in this lecture adapted from Hector Corrado Bravo
4

https://ropensci.github.io/reproducibility-guide/sections/introduction/

Reproducibility

• “Open data is the idea that some data should be freely
available to everyone to use and republish as they wish,
without restrictions from copyright, patents or other
mechanisms of control”

• Open Data Websites.
– http://www.opendatafoundation.org/
– https://portal-nolagis.opendata.arcgis.com/

5

http://www.opendatafoundation.org/
https://portal-nolagis.opendata.arcgis.com/

Practical Tips

• Many tasks can be organized in modular manner:
• Data acquisition:
– Get data, put it in usable format (many ‘join’

operations), clean it up, checkpoint it!
• Algorithm/tool development:
– If new analysis tools are required.

• Computational analysis:
– Use tools to analyze data.

• Communication of results:
– Prepare summaries of experimental results,

plots, publication, upload processed data to
repositories.

Usually a single language or tool does not handle all of
these equally well – choose the best tool for the job!

6

Practical Tips

• Modularity requires organization and careful thought
• In Data Science, we wear two hats:
– Algorithm/tool developer
– Experimentalist: we don’t get trained to think this way enough!

• It helps two consciously separate these two jobs

• Think like an experimentalist!
– Plan your experiment
– Gather your raw data
– Gather your tools
– Execute experiment
– Analyze
– Communicate 7

Think Like An Experimentalist

• Let this guide your organization. One potential structure for organizing a project:

project/
| data/
| | processing_scripts
| | raw/
| | proc/
| tools/
| | src/
| | bin/
| exps
| | pipeline_scripts
| | results/
| | analysis_scripts
| | figures/ 8

Think Like An Experimentalist

• Keep a lab notebook!

• Literate programming tools are making this easier for
computational projects:
– http://en.wikipedia.org/wiki/Literate_programming (Lec #2!)
– https://ipython.org/
– http://rmarkdown.rstudio.com/
– http://jupyter.org/

9

http://en.wikipedia.org/wiki/Literate_programming
https://ipython.org/
http://rmarkdown.rstudio.com/
http://jupyter.org/

Think Like An Experimentalist

• Separate experiment from analysis from communication
– Store results of computations
– Write separate scripts to analyze results and make

plots/tables
• Aim for reproducibility!

• There are serious consequences for not being careful
– Publication retraction
– Worse:

http://videolectures.net/cancerbioinformatics2010_bag
gerly_irrh/

• Lots of tools available to help, use them! Be proactive:
learn about them on your own! 10

http://videolectures.net/cancerbioinformatics2010_baggerly_irrh/

Docker

• Docker is a tool for creating containers which
allow you to easily distribute and scale code.
– Like a VM it abstracts away the actual

machine in order to increase portability.
– A VM abstracts the hardware, kernel,

and user space for every machine.
– A container is more lightweight, only

the binaries and libraries are are unique
for each container.

• Both containers and VMs have private space
for processing, can execute commands as
root, have a private network interface and IP
address, allow custom routes and iptable
rules, can mount file systems, and etc…

11

https://www.freecodecamp.org/news/a-beginner-friendly-introduction-to-containers-vms-and-docker-79a9e3e119b/

https://www.freecodecamp.org/news/a-beginner-friendly-introduction-to-containers-vms-and-docker-79a9e3e119b/

Building Docker Files

• A Docker container is built out of a Dockerfile
– For Project0 we are using the

jupyter/datascience-notebook docker image:
https://hub.docker.com/r/jupyter/datascience-notebook/dockerfile

– List of images: https://hub.docker.com/search/?type=image

– A dockerfile contains a line by line what
packages should be included in the image to
build the container.

– A dockerfile can stack on top of other images,
for instance, the datascience-notebook is built
on top of the jupyter-base notebook.

• Once the container is made it volumes are connected
back to the host operating system to allow you to
read and edit files. 12

https://hub.docker.com/r/jupyter/datascience-notebook/dockerfile
https://hub.docker.com/search/?type=image

Deep Dive – Jupyter Docker Files

• Project Jupyter maintains a set of Docker
images for easy use of the notebook and
related software.
– More about Jupyter Images: https://jupyter-

docker-stacks.readthedocs.io/en/latest/using/selecting.html

– Looking at the base notebook stack we
see it’s built on Ubuntu
https://github.com/jupyter/docker-stacks/blob/master/base-
notebook/Dockerfile

13

https://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html
https://github.com/jupyter/docker-stacks/blob/master/base-notebook/Dockerfile

Unpacking a Docker Command

• docker run the command to tell Docker to run a container.
• -it Since we are using a program that needs a shell, this tells Docker to give us an interactive

terminal
• -v /Users/nsmattei/project0:/home/jovyan/notebooks mounts the current project0 directory on the

guest OS, so that everything in project0 directory will be available in notebooks directory on
the guest.

• -rm this tells Docker to clean up after we close the notebook terminal.
• -p 8888:8888 maps the 8888 port on the host OS to the 8888 port on the guest container. So if

you were to go to http://localhost:8888, it will redirect to the 8888 port on the container -
Jupyter Notebook starts a web server on that port on the guest.

• jupyter/datascience-notebook tells Docker which container to load.

• More details: https://docs.docker.com/engine/reference/run/ 14

docker run -it -v /Users/nsmattei/project0:/home/jovyan/notebooks --rm -p 8888:8888 jupyter/datascience-notebook

http://localhost:8888/
https://docs.docker.com/engine/reference/run/

What is Version Control?

15

atlassian.com/git/tutorials/what-is-version-control

Goals of Version Control
• When working with a team, the need for a central repository is essential
– Need a system to allow versioning, and a way to acquire the latest

edition of the code
– A system to track and manage bugs was also needed

• Be able to search through revision history and retrieve previous versions of
any file in a project

• Be able to share changes with collaborators on a project
• Be able to confidently make large changes to existing files

16

Named Folders Approach

• Can be hard to track
• Memory-intensive
• Can be slow
• Hard to share
• No record of authorship

17

Local Database of Versions Approach

• Provides an abstraction over finding the right versions of files and replacing
them in the project

• Records who changes what, but hard to parse that
• Can’t share with collaborators!!

18

Centralized Version Control Systems

• A central, trusted repository determines the
order of commits (“versions” of the project)

• Collaborators “push” changes (commits) to this
repository.

• Any new commits must be compatible with the
most recent commit. If it isn’t, somebody must
“merge” it in.

• Examples: SVN, CVS, Perforce

19

Central
Repository

Developer
A’s local

files

Developer
D’s local

files

Developer
C’s local

files

Developer
B’s local

files

Commit

Checkout Checkout

Commit

Commit Commit

CheckoutCheckout

Dev
A’s
Repo

Dev
B’s
Repo

Dev
C’s
Repo

Dev
D’s
Repo

Commit Commit

Commit

Commit

Push/Fetch

Push/Fetch

Push/Fetch

Push/Fetch
Push/Fetch

Push/Fetch

Centralized Version
Control System

Distributed Version
Control System

• No central repository
• Every repository has every commit
• Examples: Git, Mercurial

Distributed Version Control Systems (DVCS)

20

What is Git

• Git is a version control system
• Developed as a repository system for both local and remote changes
• Allows teammates to work simultaneously on a project
• Tracks each commit, allowing for a detailed documentation of the project along every step
• Allows for advanced merging and branching operations

21

A Short History of Git
• Linux kernel development
• 1991-2002.
– Changes passed around as archived file – PATCH files.

• 2002-2005.
– Using a DVCS called BitKeeper

• 2005
– Relationship broke down between two communities (BitKeeper licensing issues)

• Goals of Git
– Speed
– Simple design
– Strong support for non-linear development (thousands of parallel branches)
– Fully distributed – not a requirement, can be centralized
– Able to handle large projects like the Linux kernel efficiently (speed and data size)

22

A short history of Git

• Popularity:
• Git is now the most widely used source code management tool
• 33.3% of professional software developers use Git (often through GitHub) as their primary

source control system

[citation needed]

23

Git in Industry
• Companies and projects currently using Git
• Google
• Android
• Facebook
• Microsoft
• Netflix
• Linux
• Ruby on Rails
• Gnome
• KDE
• Eclipse
• X.org
• IBM

24

Git Basics

• Snapshots, not changes
– A picture of what all your files look like at that moment
– If a file has not changed, store a reference

• Nearly every operation is local
– Browsing the history of project
– See changes between two versions (diff)

25

Why Git is Better

• Git tracks the content rather than the files
• Branches are lightweight, and merging is a simple process
• Allows for a more streamlined offline development process
• Repositories are smaller in size and are stored in a single .git directory
• Allows for advanced staging operations, and the use of stashing when working through

troublesome sections

26

What about SVN?

Linus Torvalds

Subversion has been the most pointless project ever started …
Subversion used to say CVS done right: with that slogan there is
nowhere you can go. There is no way to do CVS right … If you like
using CVS, you should be in some kind of mental institution or
somewhere else.

27

• Why you should care:
– Many places use legacy systems that will cause problems in

the future – be the change you believe in!
• Git is much faster than SVN:
– Coded in C, which allows for a great amount of

optimization
– Accomplishes much of the logic client side, thereby

reducing time needed for communication
– Developed to work on the Linux kernel, so that large

project manipulation is at the forefront of the benchmarks

Git vs {CVS, SVN, …}

28

Git vs {CVS, SVN, …}

• Speed benchmarks:

Benchmarks performed by http://git-scm.com/about/small-and-fast

29

http://git-scm.com/about/small-and-fast

Git vs {CVS, SVN, …}

• Git is significantly smaller than SVN
– All files are contained in a small decentralized .git file
– In the case of Mozilla’s projects, a Git repository was 30 times smaller than an identical

SVN repository
– Entire Linux kernel with 5 years of versioning contained in a single 1 GB .git file
– SVN carries two complete copies of each file, while Git maintains a simple and separate

100 bytes of data per file, noting changes and supporting operations

• Nice because you can (and do!) store the whole thing locally

30

Git vs {CVS, SVN, …}

• Git is more secure than SVN
– All commits are uniquely hashed for both

security and indexing purposes
– Commits can be authenticated through

numerous means
– In the case of SSH commits, a key may be

provided by both the client and server to
guarantee authenticity and prevent against
unauthorized access

31

• Git is decentralized:
– Each user contains an individual repository

and can check commits against itself,
allowing for detailed local revisioning

– Being decentralized allows for easy
replication and deployment

– In this case, SVN relies on a single
centralized repository and is unusable
without a connection to this repository!

Git vs {CVS, SVN, …}

• Git is flexible:
– Due to it’s decentralized nature, git

commits can be stored locally, or
committed through HTTP, SSH, FTP, or
even by Email

– No need for a centralized repository
– Developed as a command line utility,

which allows a large amount of features
to be built and customized on top of it

32

• Data assurance: a checksum is performed on
both upload and download to ensure sure that
the file hasn’t been corrupted.
– Commit IDs are generated upon each

commit:
– Linked list style of commits
– Each commit is linked to the next, so that

if something in the history was changed,
each following commit will be rebranded
to indicate the modification

Git vs {CVS, SVN, …}

• Branching
– Git allows the usage of advanced

branching mechanisms and procedures
– Individual divisions of the code can be

separated and developed separately
within separate branches of the code

– Branches can allow for the separation of
work between developers, or even for
disposable experimentation

– Branching is a precursor and a
component of the merging process

33

• Merging
– The process of merging is directly related

to the process of branching
– Individual branches may be merged

together, solving code conflicts, back into
the default or master branch of the project

– Merges are usually done automatically,
unless a conflict is presented, in which
case the user is presented with several
options with which to handle the conflict

Git vs {CVS, SVN, …}

• Merging – The big differences…
– Content of the files is tracked rather than the file itself
– This allows for a greater element of tracking and a smarter and more automated process

of merging
– SVN is unable to accomplish this, and will throw a conflict if, e.g., a file name is changed

and differs from the name in the central repository
– Git is able to solve this problem with its use of managing a local repository and tracking

individual changes to the code

34

Initialization of a Git repository

C:\> mkdir CoolProject
C:\> cd CoolProject
C:\CoolProject > git init
Initialized empty Git repository in
C:/CoolProject/.git
C:\CoolProject > notepad README.txt
C:\CoolProject > git add .
C:\CoolProject > git commit -m 'my first
commit'
[master (root-commit) 7106a52] my first commit
1 file changed, 1 insertion(+)
create mode 100644 README.txt

35

Git Basics I

• The three (or four) states of a file:
• Modified:
– File has changed but not committed

• Staged:
– Marked to go to next commit snapshot

• Committed:
– Safely stored in local database

• Untracked!
– Newly added or removed files

36

Git Basics II

• Three main areas of a git project:
• Working directory
– Single checkout of one version of

the project.
• Staging area
– Simple file storing information

about what will go into your next
commit

• Git directory
– What is copied when cloning a

repository

37

Branches Illustrated

master
A

> git commit –m ‘my first commit’

(Default branch is called “master”; your
first commit will be on this branch.)

38

Branches Illustrated

master

> git commit (x2)

A B C

39

Branches Illustrated

bug123

master

> git checkout –b bug123

A B C

40

Branches Illustrated

master

> git commit (x2)

A B C

D E

bug123

41

Branches Illustrated

master

> git checkout master

A B C

D E

bug123

42

Branches Illustrated

bug123

master

> git merge bug123

A B C D E

43

Branches Illustrated

master

> git branch -d bug123

A B C D E

44

Branches Illustrated

master
A B C D E

F G

bug456

45

Branches Illustrated

master
A B C D E

F G

bug456

> git checkout master

46

Branches Illustrated

master
A B C D E

F G

> git merge bug456

H

bug456

47

Branches Illustrated

master
A B C D E

F G

> git branch -d bug456

H

48

Branches Illustrated

master
A B C D E

F G

bug456

49

Branches Illustrated

master
A B C D E

> git rebase master

F’ G’

bug456

50

Branches Illustrated

master
A B C D E

> git checkout master
> git merge bug456

F’ G’

bug456

51

When to Branch?

• General rule of thumb:
– Anything in the master branch is always deployable.

• Local branching is very lightweight!
– New feature? Branch!
– Experiment that you won’t ever deploy? Branch!

• Good habits:
– Name your branch something descriptive (add-like-

button, refactor-jobs, create-ai-singularity)
– Make your commit messages descriptive, too!

52

• Git: general distributed version control system
• GitHub / BitBucket / GitLab / …: hosting services for git repositories
• In general, GitHub is the most popular:
• Lots of big projects (e.g., Python, Bootstrap, Angular, D3, node,

Django, Visual Studio)
• Lots of ridiculously awesome projects (e.g.,

https://github.com/maxbbraun/trump2cash)
• There are reasons to use the competitors (e.g., private repositories,

access control)

So you want somebody else to host this for you …

53

https://github.com/maxbbraun/trump2cash)

Social Coding

54

Review: How to Use
• Git commands for everyday usage are relatively simple
• git pull

– Get the latest changes to the code
• git add .

– Add any newly created files to the repository for
tracking

• git add –u
– Remove any deleted files from tracking and the

repository
• git commit –m ‘Changes’

– Make a version of changes you have made
• git push

– Deploy the latest changes to the central repository
• Make a repo on GitHub and clone it to your machine:

– https://guides.github.com/activities/hello-world/

55

https://guides.github.com/activities/hello-world/

Stuff to click on
• Git
– http://git-scm.com/

•GitHub
–https://github.com/
–https://guides.github.com/activities/hello-world/
– ^-- Just do this one. You’ll need it for your tutorial J.

• GitLab
– http://gitlab.org/

• Git and SVN Comparison
– https://git.wiki.kernel.org/index.php/GitSvnComparison

• BitBucket and Sourcetree
– https://www.sourcetreeapp.com/

56

http://git-scm.com/
https://github.com/
https://guides.github.com/activities/hello-world/
http://gitlab.org/
https://git.wiki.kernel.org/index.php/GitSvnComparison
https://www.sourcetreeapp.com/

