Best Practices & Git

Nicholas Mattei, Tulane University
CMPS3660 — Introduction to Data Science — Fall 2019

https://rebrand.ly/TUDataScience

Many Thanks
Slides based off Introduction to Data Science from John P. Dickerson -
https://cmsc320.github.io/

Tulane
University

https://rebrand.ly/TUDataScience
https://cmsc320.github.io/

%lrllzilxrllgrsity

Announcements

e Lab day moved to Tuesday 9/10

— Make sure you can run Docker or
Anaconda on your laptop.

— Note that you can develop on
either Docker, Anaconda, System
Python... but it must run on
Docker for grading.

— Make sure you can run the

Notebook from Tuesday somehow.

* Going over Quiz 1

 Finish up Notebook from Lecture 3

/‘ (Ensy_ lNSTALD «7— $PY|’HONP!-\TH

/\\\ £\m b

HOVIES “—(ANOTHER PIP??)
st () L
K,- {ON = / /
\ / PYTHON.ORG
0s P‘(THON \ HOMEBRE\J BINARY (2.6)

PYTHON (36)
(lek /— —& J /
??"’?—->OUNEDBY \
/ \\ ¥

~[python/
~/newenv/

Jusr/local /Cellar
~|__[/usr/local/lib/ python3.6
fosellocal/Opt | 1™~ juse/ioaal/Iib/ python27

/(A BUNCH OF PATHS WITH “FRAMEWORKS" IN THEM SOMEWHERE)/

MY PYTHON ENVIRONMENT HAS BECOME SO DEGRADED
THAT MY LAPTOP HAS BEEN DECLARED A SUPERFUND SITE.

www.xkcd.com

r{ljltllail{/leersity

The Data LifeCycle

Exploratory
Analysis
&
Data
Visualization

Analysis, Insight
Hypothesis &
Testing, Policy
Decision

Data Data
Collection Processing

%ltlleilxlflgrsity

Reproducibility

e Extremely important aspect of data analysis

— “Starting from the same raw data, can we reproduce your analysis
and obtain the same results?”

— https://ropensci.github.io/reproducibility-
guide/sections/introduction/

* Using libraries helps:
— Since you don’t reimplement everything, reduce programmer error
— Large user bases serve as “watchdog” for quality and correctness
e Standard practices help:
— Version control: git, git, git, ..., git, svn, cvs, hg, Dropbox
— Unit testing: unittest (Python), RUnit (R), testthat
— Share and publish: github, gitlab

Many slides in this lecture adapted from Hector Corrado Bravo

https://ropensci.github.io/reproducibility-guide/sections/introduction/

%lrllzil\rllgrsity

Reproducibility

* “Open data is the idea that some data should be freely
available to everyone to use and republish as they wish,
without restrictions from copyright, patents or other
mechanisms of control”

e Open Data Websites.

— http://www.opendatafoundation.org/

— https://portal-nolagis.opendata.arcgis.com/ T e omo o

9% City of New Orleans GIS

Explore
Your City

9

http://www.opendatafoundation.org/
https://portal-nolagis.opendata.arcgis.com/

%ltll?\lflgrsity

Practical Tips

* Many tasks can be organized in modular manner:
* Data acquisition:
— Get data, put it in usable format (many ‘join’
operations), clean it up, checkpoint it!

e Algorithm/tool development:

Usually a single language or tool does not handle all of

— Ilfnew analYSlS tools are recluued' these equally well — choose the best tool for the job!

e Computational analysis:
— Use tools to analyze data.

e Communication of results: “
— Prepare summaries of experimental results,

plots, publication, upload processed data to
repositories.

N\

%lrllzilxrfleersity

Practical Tips

* Modularity requires organization and careful thought
e In Data Science, we wear two hats:

— Algorithm/tool developer

— Experimentalist: we don’t get trained to think this way enough!
* It helps two consciously separate these two jobs

e Think like an experimentalist!
— Plan your experiment
— Gather your raw data
— Gather your tools
— Execute experiment
— Analyze
— Communicate

Tulane
University

Think Like An Experimentalist

* Let this guide your organization. One potential structure for organizing a project:

project/
data/

| processing scripts

raw/
proc/

tools/

src/
bin/

exps

pipeline scripts
results/
analysis scripts
figures/

%lrllzilxrflgrsity

Think Like An Experimentalist

e Keep a lab notebook!

o Literate programming tools are making this easier for
computational projects:

— http://en.wikipedia.org/wiki/Literate programming (Lec #2!)

— https://ipython.org/

— http://rmarkdown.rstudio.com/
— http:/jupyter.org/

http://en.wikipedia.org/wiki/Literate_programming
https://ipython.org/
http://rmarkdown.rstudio.com/
http://jupyter.org/

%ltll?\lflgrsity

Think Like An Experimentalist Rareeton ‘ Category: aked data

Tracking retractions as a
window into the scientific

® Separate experiment from analysis from communication

— Store results of computations “Evidence of fabricated data”
o o o support Rt leads to retraction of paper
— Write separate scripts to analyze results and make = on software engineering
plots/tables o s popatat
ware engineers
e Aim for reproducibility! e o oy s

lost a 2017 paper
on web-based ap-

Retraction Watch Database
User Guide
plications over

Retraction Watch Database
concerns that the

User Guide Appendix A:

* There are serious consequences for not being careful - P
— Publication retraction - i
User Guide Appendix C: ging of web ap-

— Worse:
http://videolectures.net/cancerbioinformatics2010 bag
gerly irrh/

* Lots of tools available to help, use them! Be proactive:
learn about them on your own! 10

http://videolectures.net/cancerbioinformatics2010_baggerly_irrh/

%ltll?\lflgrsity

Docker = T e
#1 #2 #3
: : : : Container
* Docker is a tool for creating containers which o P
allow you to easily distribute and scale code. Libs Libs Libs
— Like a VM it abstracts away the actual Docker Engine
machine in order to increase portability.
— A VM abstracts the hardware, kernel, ™
. App App App
and user space for every machine. b #2 #3

— A container is more lightweight, on?y N B e
the binaries and libraries are are unique Libs | | Libs | | Libs \
for each container.

VM

Guest Guest Guest

* Both containers and VMs have private space
for processing, can execute commands as
root, have a private network interface and IP . 7

. Hypervisor
address, allow custom routes and iptable
rules, can mount file systems, and etc... Host 0S

https://www.freecodecamp.org/news/a-beginner-friendly-introduction-to-containers-vms-and-docker-79a9e3e119b/

https://www.freecodecamp.org/news/a-beginner-friendly-introduction-to-containers-vms-and-docker-79a9e3e119b/

%ltllzilxlfleersity

Building Docker Files

e A Docker container is built out of a Dockerfile

— For Project0 we are using the

jupyter/datascience-notebook docker image:
https://hub.docker.com/r/jupyter/datascience-notebook/dockerfile

— List of images: https://hub.docker.com/search/?type=image

— A dockerfile contains a line by line what
packages should be included in the image to
build the container.

— A dockerfile can stack on top of other images,
for instance, the datascience-notebook is built
on top of the jupyter-base notebook.

e Once the container is made it volumes are connected
back to the host operating system to allow you to
read and edit files.

Docker Client

docker build
docker run
docker pull

docker push

Docker Registry

&

ubuntu redis

mndc

—>

H Dockerfile

09

PosgreSOL

\

Docker Host

Images Containers

node
oy UbUNEU

Deamon

\Volumes

1£

https://hub.docker.com/r/jupyter/datascience-notebook/dockerfile
https://hub.docker.com/search/?type=image

Tulane
University

Deep Dive - Jupyter Docker Files

* Project Jupyter maintains a set of Docker
images for easy use of the notebook and
related software.

— More about Jupyter Images: https:/jupyter- @A

docker-stacks.readthedocs.io/en/latest/using/selecting.html T

— Looking at the base notebook stack we e

see it’s built on Ubuntu f

https://github.com/jupyter/docker-stacks/blob/master/base-

references
parent
image

v

notebook/Dockerfile
minimal-notebook
Y v
scipy-notebook r-notebook
T —
134 lines (113 sloc) 4.74 KB Raw Blame History [J #° [\ ¢
Copyright (c) Jupyter Development Team.
" .
Distributed under the terms of the Modified BSD License. tensorflow-notebook datascience-notebook
T — T —

Ubuntu 18.04 (bionic) from 2019-06-12

https://github.com/tianon/docker-brew-ubuntu-core/commit/3¢462555392¢cb188830b7c91e29311b5fad9%0cfe

ARG BASE_CONTAINER=ubuntu:bionic-20190612@sha256:9b1702dcfe32¢873a770a32cfd306dd7fclc4fd134adfb783db68defc8894b3c
FROM $BASE_CONTAINER

pyspark-notebook

all-spark-notebook '

https://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html
https://github.com/jupyter/docker-stacks/blob/master/base-notebook/Dockerfile

%lrllzilxrfleersity

Unpacking a Docker Command

docker run -it -v /Users/nsmattei/project0:/home/jovyan/notebooks --rm -p 8888:8888 jupyter/datascience-notebook

e docker run the command to tell Docker to run a container.

* -it Since we are using a program that needs a shell, this tells Docker to give us an interactive
terminal

o -v /Users/nsmattei/project0:/home/jovyan/notebooks mounts the current projectO directory on the
guest OS, so that everything in projectO directory will be available in notebooks directory on
the guest.

e -rm this tells Docker to clean up after we close the notebook terminal.

* -p 8888:8888 maps the 8888 port on the host OS to the 8888 port on the guest container. So it
you were to go to http://localhost:8888, it will redirect to the 8888 port on the container -
Jupyter Notebook starts a web server on that port on the guest.

* jupyter/datascience-notebook tells Docker which container to load.

» More details: https://docs.docker.com/engine/reference/run/ .

http://localhost:8888/
https://docs.docker.com/engine/reference/run/

Tulane
University

What is Version Control?

oject_actually_final
olect_Fina1
olect_handin

olect_o1d_idea
oject_superfrogger
oject_temp
olect_th1s_one_works
oject_vl

'oject_le
‘OJect_vll
’OJeCt_Vlz
'olect_v13
'olect_v14
'olect_v15
'olect_v16
~oject_v2

termproj
termproj
termproj
termproj
termproj
termproj
termpr

15

%lrllzilxrfleersity

Goals of Version Control

e When working with a team, the need for a central repository is essential

— Need a system to allow versioning, and a way to acquire the latest
edition of the code

— A system to track and manage bugs was also needed

* Be able to search through revision history and retrieve previous versions of
any file in a project

* Be able to share changes with collaborators on a project

* Be able to confidently make large changes to existing files O_ () 'O_O

?

atlassian.com/git/tutorials/what-is-version-control

16

%llllzil\rllgrsity

Named Folders Approach

e Can be hard to track m P
* Memory-intensive Untitled 136 copy-docx
 Canbe o b i
e Hard to share m:ilz ggzr’g’l ADDRESS. 5p9
e No record of authorship Untitled 243.doc
Untitled %’?3 5 IMPORTANT. doc
g onmve

/

PROTIP: NEVER LOOK, IN SOMEONE
ELSE’s DOCUMENTS FOLDER.

%lrllzilxrfleersity

Local Database of Versions Approach

It=y =

Database

Project

Files Old Versions

e Provides an abstraction over finding the right versions of files and replacing
them in the project

® Records who changes what, but hard to parse that
e Can’t share with collaborators!!

18

Tulane
University

Centralized Version Control Systems

e A central, trusted repository determines the
order of commits (“versions” of the project)

e Collaborators “push” changes (commits) to this
repository.

Network Connection

* Any new commits must be compatible with the
most recent commit. If it isn’t, somebody must
“merge” it in.

QDA;WSE
e Examples: SVN, CVS, Perforce o~

Central
Repository

Al
‘\[update
update \' pd

S update
.

19

%lrll?\rflgrsity

Distributed Version Control Systems (DVCS)

* No central repository

* Every repository has every commit

« Examples: Git, Mercurial

Developer
A’s local
files

Developer
B’s local
files

Checkout Checkout

Central
Repository

Commit Commit

Checkout Checkout

Developer
C’s local
files

Developer
D’s local
files

Centralized Version
Control System

Commit

Dev ‘

Push/Fetch

Push/Fetch

Commit

Y

Distributed Version
Control System

Push/Fetch

Push/Fetch

Commit

20

%ltll?\lflgrsity

What is Git

 Git is a version control system
* Developed as a repository system for both local and remote changes

e Allows teammates to work simultaneously on a project

* Tracks each commit, allowing for a detailed documentation of the project along every step
e Allows for advanced merging and branching operations

o1t

21

%lrllégflgrsity

A Short History of Git

e Linux kernel development
e 1991-2002.
— Changes passed around as archived file - PATCH files.
e 2002-2005.
— Using a DVCS called BitKeeper
e 2005

— Relationship broke down between two communities (BitKeeper licensing issues)

e Goals of Git
— Speed
— Simple design
— Strong support for non-linear development (thousands of parallel branches)
— Fully distributed — not a requirement, can be centralized

22

— Able to handle large projects like the Linux kernel efficiently (speed and data size)

Tulane
University

A short history of Git

* Popularity:

Git is now the most widely used source code management tool

33.3% of professional software developers use Git (often through GitHub) as their primary

source control system \

Interest over time. Web Search. Worldwide, 2004 - present.

[citation needed]

—— Git —— Apache Subversion Mercurial —— Perforce Helix = —— Concurrent Versions System

A
A 7 \N_A_~ 2
,/\/ \‘/ e \\‘,.,\/ \"\’/"\,\\ . ~, !
a A 2 YA ~ ’
'\~ / ~a e ——=
~ \J - PR
/ \ N .,I /M—'\
v/ - < f'\/
N/’ V\",\"‘-\
~
™M i

e T s

-

-
T iy g

/
s ~\ /
Vil v

2005 2007 2009 201 2013 2015

Go g le View full report in Google Trends

23

%lrll?\rflésity

Git in Industry

e Companies and projects currently using Git
* Google

* Android

« Facebook

* Microsoft

* Netflix
 Linux

* Ruby on Rails
« Gnome

« KDE

* Eclipse

¢ X.org

 IBM

24

%lrllzilxrfleersity

Git Basics

* Snapshots, not changes
— A picture of what all your files look like at that moment
— If a file has not changed, store a reference
* Nearly every operation is local
— Browsing the history of project
— See changes between two versions (diff)

25

%lrllzilxrfleersity

Why Git is Better

 Git tracks the content rather than the files

* Branches are lightweight, and merging is a simple process

e Allows for a more streamlined offline development process

* Repositories are smaller in size and are stored in a single .git directory

e Allows for advanced staging operations, and the use of stashing when working through
troublesome sections

26

%ltlleilxlflgrsity

What about SVN?

Subversion has been the most pointless project ever started ...
Subversion used to say CVS done right: with that slogan there is
nowhere you can go. There is no way to do CVSright ... If you like
using CVS, you should be in some kind of mental institution or
somewhere else.

4 e 27
Linus Torvalds

Tulane
University

Git vs {CVS, SVN, ...}

* Why you should care:
— Many places use legacy systems that will cause problems in
the future — be the change you believe in!
e Git is much faster than SVN:
— Coded in C, which allows for a great amount of
optimization
— Accomplishes much of the logic client side, thereby
reducing time needed for communication

— Developed to work on the Linux kernel, so that large
project manipulation is at the forefront of the benchmarks

28

r{lJlrlleil\I/leersity

Git vs {CVS, SVN, ...}

* Speed benchmarks:

Commit A Commit B Diff Curr Diff Rec Diff Tags Clone

—

git svn git svn git svn git svn git svn

Log (50) Log (All) Log (File) Update Blame Size

—

git svn git svn git swvn git svn git svn git svn

Benchmarks performed by http://git-scm.com/about/small-and-fast

29

http://git-scm.com/about/small-and-fast

%ltlleilxlflgrsity

Git vs {CVS, SVN, ...}

e (it is significantly smaller than SVN

All files are contained in a small decentralized .git file

In the case of Mozilla’s projects, a Git repository was 30 times smaller than an identical
SVN repository

Entire Linux kernel with 5 years of versioning contained in a single 1 GB .git file

SVN carries two complete copies of each file, while Git maintains a simple and separate
100 bytes of data per file, noting changes and supporting operations

* Nice because you can (and do!) store the whole thing locally

30

%ltll?\lflgrsity

Git vs {CVS, SVN, ...}

e Git is more secure than SVN * Git is decentralized:

— [Each user contains an individual repository
and can check commits against itself,
allowing for detailed local revisioning

— All commits are uniquely hashed for both
security and indexing purposes

— Commits can be authenticated through

NUMerous means — Being decentralized allows for easy

— In the case of SSH commits, a key may be replication and deployment

provided by both the client and server to
guarantee authenticity and prevent against
unauthorized access

— In this case, SVN relies on a single
centralized repository and is unusable
without a connection to this repository!

31

%lllleil\rlleersity

Git vs {CVS, SVN, ...}

e Git is flexible: e Data assurance: a checksum is performed on
both upload and download to ensure sure that

— Due to it’s decentralized nature, git ,
5 the file hasn’t been corrupted.

commits can be stored locally, or _
committed through HTTP, SSH, FTP, or — Commit IDs are generated upon each

even by Email commit:

— No need for a centralized repository — Linked list style of commits

— Each commit is linked to the next, so that
it something in the history was changed,
each following commit will be rebranded
to indicate the modification

— Developed as a command line utility,
which allows a large amount of features
to be built and customized on top of it

32

%lrllzilxrfleersity

Git vs {CVS, SVN, ...}

e Branching * Merging

— Git allows the usage of advanced — The process of merging is directly related
branching mechanisms and procedures to the process of branching

— Individual divisions of the code can be — Individual branches may be merged
separated and developed separately together, solving code contflicts, back into
within separate branches of the code the default or master branch of the project

— Branches can allow for the separation of — Merges are usually done automatically,
work between developers, or even for unless a conflict is presented, in which
disposable experimentation case the user is presented with several

— Branching is a precursor and a options with which to handle the conflict

component of the merging process

33

%ltllzilxlfleersity

Git vs {CVS, SVN, ...}

* Merging — The big differences...

Content of the files is tracked rather than the file itself

This allows for a greater element of tracking and a smarter and more automated process

of merging

SVN is unable to accomplish this, and will throw a conflict if, e.g., a file name is changed

and differs from the name in the central repository

Git is able to solve this problem with its use of managing a local repository and tracking

individual changes to the code

Master tip

N2

New merge
commit

/l\

Feature tip

N2

Common base E ; E ; ()

34

%lrllzilxrflgrsity

Initialization of a Git repository

C:\> mkdir CoolProject
C:\> cd CoolProject
C:\CoolProject > git init
Initialized empty Git repository in
C:/CoolProject/.git
C:\CoolProject > notepad README.txt
C:\CoolProject > git add .
C:\CoolProject > git commit -m 'my first
commit'
[master (root-commit) 7106a52] my first commit
1 file changed, 1 insertion(+)
create mode 100644 README.txt

am Windows 35

%lrlleil\lfl&sity

Git Basics |

Y The three (Or four) States Of a file: nsmattei@MatteiMac:~/repo/github/review_market$ git status
On branch master
£ . Your branch is behind 'origin/master' by 29 commits, and can be fast-forwarded.
o ’
MOdlfled' (use "git pull" to update your local branch)
(use "git add <file>..." to update what will be committed)
o Staged: (use "git checkout -- <file>..." to discard changes in working directory)

— Marked to go to next commit snapshot
° CommlttEdZ Untracked‘files: ‘ ‘ ‘ ‘ ‘

. Safely stored in local database (use "git add <file>..." to include in what will be committed)
e Untracked!

— Newly added or removed files

no changes added to commit (use "git add" and/or "git commit -a")

36

r{ljlrll(cil{/lgrsity

Git Basics li

e Three main areas of a git project:
* Working directory

— Single checkout of one version of
the project.

e Staging area
— Simple file storing information

about what will go into your next
commit

e Git directory

— What is copied when cloning a
repository

Local Operations

(

working staging
directory area

e
L=
—

37

%ltllaixlfleersity

Branches lllustrated

(Default branch is called “master”; your
* first commit will be on this branch.)

o

> git commit -m ‘my first commit’

38

ii’%?ﬁ%%iﬁQy

Branches lllustrated

> git commit (x2)

39

r{ljlrll(cil{/lgrsity

Branches lllustrated

> git checkout -b bugl23

40

r{ljlrllailggrsity

Branches lllustrated

> git commit (x2)

41

r{ljlrll(cil{/lgrsity

Branches lllustrated

> git checkout master

42

r{ljlrll(cil{/lgrsity

Branches lllustrated

> git merge bugl23

43

ii’%?ﬁ%%iﬁQy

Branches lllustrated

> git branch -d bugl23

44

r{ljlrllailggrsity

Branches lllustrated

=ﬂm

45

r{ljlrll(cil{/lgrsity

Branches lllustrated

> git checkout master

46

r{ljlrll(cil{/lgrsity

Branches lllustrated

> git merge bugd56

47

ii’%?ﬁ%%iﬁQy

Branches lllustrated

> git branch -d bug456

48

r{ljlrllailggrsity

Branches lllustrated

=ﬂm

49

r{ljlrll(cil{/lgrsity

Branches lllustrated

> git rebase master

50

ii’%%&?%iﬁQy

Branches lllustrated

> git checkout master
> git merge bug456

51

Tulane
University

When to Branch?

* General rule of thumb:

— Anything in the master branch is always deployable.
® [ocal branching is very lightweight!

— New feature? Branch!

— Experiment that you won't ever deploy? Branch!
* Good habits:

— Name your branch something descriptive (add-1ike-
button, refactor-jobs, create-ai-singularity)

— Make your commit messages descriptive, too!

52

%ltll?\lflgrsity

So you want somebody else to host this for you ...

* Git: general distributed version control system
e GitHub / BitBucket / GitLab / ...: hosting services for git repositories
* In general, GitHub is the most popular:

* Lots of big projects (e.g., Python, Bootstrap, Angular, D3, node,
Django, Visual Studio)

* Lots of ridiculous projects (e.g.,
https://github.com/maxbbraun/trump2cash)

* There are reasons to use the competitors (e.g., private repositories, -
access control) BlthCkEt

https://github.com/maxbbraun/trump2cash)

Tulane
University

Social Coding

@ Set status

Nicholas Mattei

nmattei

* I3
Edit profile
42 Tulane University

B4 nsmattei@gmail.com

@ http://www.nickmattei.net

Organizations

IIK e

Overview Repositorigs 16 Projects 0 Stars 11

Followers 9

Pinned

1

L] PrefLib-Tools

A small and lightweight set of Python tools for working with and
generating data from www.PrefLib.org.

@®Python *13 ¥5

LJ peerselection

Implementations of Stragegyproof Peer Selection Mechanisms

@ Python

L] ShapleyTSG

Data and Code from our paper, "A Study of Proxies for Shapley
Allocations of Transport Costs."

98 contributions in the last year

Sep Oct Nov Dec Feb Mar

Learn how we count contributions.

Customize your pins

L] GenCPnet =

Code to generate CP-nets uniformly at random. Can provide bounds
on in-degree and other useful properties.

@®C++

L PrefLib-www

All data, code, and pages for the PrefLib website.

@rHp Y1

L] InterdependentSchedulingGames

Code from our IJCAI 2016 paper on Interdependent Scheduling
Games

@ Jupyter Notebook

Contribution settings ~

Apr May Jun Jul Aug
|
O |
| [| | |
|
C | |
| [| | [|

[|
Less HENE More 54

Tulane
University

Review: How to Use

¢ Git commands for everyday usage are relatively simple
git pull
— Get the latest changes to the code
e gitadd.
— Add any newly created files to the repository for
tracking
e gitadd —u
— Remove any deleted files from tracking and the
repository

¢ ¢git commit —-m ‘Changes’

— Make a version of changes you have made
e ¢it push

— Deploy the latest changes to the central repository
* Make a repo on GitHub and clone it to your machine:

— https://guides.github.com/activities/hello-world/

55

https://guides.github.com/activities/hello-world/

%ltlleilxlflg‘sity

Stuff to click on

e Git
— http://git-scm.com/
e GitHub
— https://github.com/
— https://guides.github.com/activities/hello-world/
—-- Just do this one. You'll need it for your tutorial ©.
e GitLab
— http://gitlab.org/
e Git and SVN Comparison
— https://git.wiki.kernel.org/index.php/GitSvnComparison
* BitBucket and Sourcetree

— https://www.sourcetreeapp.com/

56

http://git-scm.com/
https://github.com/
https://guides.github.com/activities/hello-world/
http://gitlab.org/
https://git.wiki.kernel.org/index.php/GitSvnComparison
https://www.sourcetreeapp.com/

